首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by threedimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.  相似文献   

2.
We study the transition between laminar and turbulent states in a Galerkin representation of a parallel shear flow, where a stable laminar flow and a transient turbulent flow state coexist. The regions of initial conditions where the lifetimes show strong fluctuations and a sensitive dependence on initial conditions are separated from the ones with a smooth variation of lifetimes by an object in phase space which we call the "edge of chaos." We describe techniques to identify and follow the edge, and our results indicate that the edge is a surface. For low Reynolds numbers we find that the surface coincides with the stable manifold of a periodic orbit, whereas at higher Reynolds numbers it is the stable set of a higher-dimensional chaotic object.  相似文献   

3.
再入尾迹湍流对雷达散射截面影响分析   总被引:4,自引:0,他引:4  
于明  牛家玉 《计算物理》2002,19(6):501-506
通过探讨高超声速再入湍流尾迹等离子体场中电磁波的散射机制,推导出在工程上描述湍流亚密等离子体雷达散射的一阶畸变波Born近似模型,分析了该模型在充分发展湍流尾迹等离子体场中的适用性,完成了适用于三维尾迹等离子体场的程序设计.以已有的湍流尾迹等离子体流场数据为基础,分析了再入尾迹湍流等离子体流动对雷达散射截面的影响.选取考察的几个有代表性的因素为:湍流模型、转捩过程、湍流尺度、电子组分脉动初始条件等.由结果可以看到,湍流转捩过程和湍流尺度对雷达散射截面值影响不大;电子组份脉动强度初始值影响较明显;湍流模型在特定条件下影响亦不大.  相似文献   

4.
A vortex ring impacting a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re=$4$x$10^4$ based on the initial diameter and translational speed of the vortex ring. The effects of bump height and vortex core thickness for thin and thick vortex rings on the vortical flow phenomena and the underlying physical mechanisms are investigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The boundary vorticity flux is analyzed to reveal the mechanism of the vorticity generation on the bump surface. The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Further, the analysis of turbulent kinetic energy reveals the transition from laminar to turbulent state. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the flow evolution and the flow transition to turbulent state.  相似文献   

5.
The study of the equilibrium states of a homogeneous turbulence, in the absence of mean gradients, leads to an equilibrium solution with zero values for the turbulent scalar flows. Stability of this equilibrium solution is achieved by a simple condition on one of the coefficients of the model. A realisibility study of the turbulent scalar flow has been carried out an has led to a general realisibility condition imposed on the model coefficients. Moreover, it has been established that, if the return to isotropy is compatible with two supplementary constraints on the model coefficients, it is possible to substitute a sufficient yet much simpler condition for the general realisability condition. Finally, a numerical optimization on the basis of the experimental results and the direct simulation results, has proven that the proposed model ensures a better prediction of the scalar turbulence with respect to Rotta's model.  相似文献   

6.
Understanding of the structure of turbulent flows at extreme Reynolds numbers (Re) is relevant because of several reasons: almost all turbulence theories are only valid in the high Re limit, and most turbulent flows of practical relevance are characterized by very high Re. Specific questions about wall-bounded turbulent flows at extreme Re concern the asymptotic laws of the mean velocity and turbulence statistics, their universality, the convergence of statistics towards their asymptotic profiles, and the overall physical flow organization. In extension of recent studies focusing on the mean flow at moderate and relatively high Re, the latter questions are addressed with respect to three canonical wall-bounded flows (channel flow, pipe flow, and the zero-pressure gradient turbulent boundary layer). Main results reported here are the asymptotic logarithmic law for the mean velocity and corresponding scale-separation laws for bulk flow properties, the Reynolds shear stress, the turbulence production and turbulent viscosity. A scaling analysis indicates that the establishment of a self-similar turbulence state is the condition for the development of a strict logarithmic velocity profile. The resulting overall physical flow structure at extreme Re is discussed.  相似文献   

7.
We review the state of the art in measurements and simulations of the behavior of premixed laminar and turbulent flames, subject to differential diffusion, stretch and curvature. The first part of the paper reviews the behavior of premixed laminar flames subject to flow stretch, and how it affects the accuracy of measurements of unstrained laminar flame speeds in stretched and spherically propagating flames. We then examine how flow field stretch and differential diffusion interact with flame propagation, promoting or suppressing the onset of thermodiffusive instabilities. Secondly, we survey the methodology for and results of measurements of turbulent flame speeds in the light of theory, and identify issues of consistency in the definition of mean flame speeds, and their corresponding mean areas. Data for methane at a single operating condition are compared for a range of turbulent conditions, showing that fundamental issues that have yet to be resolved for Bunsen and spherically propagating flames. Finally, we consider how the laminar flame scale response of flames to flow perturbations interacting with differential diffusion leads to very different outcomes to the overall sensitivity of the burning rate to turbulence, according to numerical simulations (DNS). The paper concludes with opportunities for future measurements and model development, including the perennial recommendation for robust archival databases of experimental and DNS results for future testing of models.  相似文献   

8.
The reverse transition from turbulent to laminar flow is studied in very large aspect ratio plane Couette and Taylor–Couette experiments. We show that laminar-turbulence coexistence dynamics (turbulent spots, spiral turbulence, etc.) can be seen as the ultimate stage of a modulation of the turbulent flows present at higher Reynolds number leading to regular, long-wavelength, inclined stripes. This new type of instability, whose originality is to arise within a macroscopically fluctuating state, can be described in the framework of Ginzburg–Landau equations to which noise is heuristically added to take into account the intrinsic fluctuations of the basic state.  相似文献   

9.
This study investigates the influence of large-scale flow features, including flow structure and velocity magnitude, on the early-burn period variability in a homogenous-charge spark-ignited engine fueled with premixed propane-air mixture. Particle image velocimetry and in-cylinder pressure measurement data from a previous study - were processed to enable simultaneous flow characterization and flame-front tracking as well as apparent heat-release analysis. By combining probability analysis of flame development with conditional sampling of fast and slow early-burn cycles using 10% fuel mass fraction burned, it is shown that an undesirable flow structure produces an asymmetric flame development at the initial flame growth period. This asymmetric flame structure persists through the whole initial-to-turbulent transition period until the flame becomes fully turbulent. The undesirable flow condition is characterized by large-scale convective flows near spark plug rather than flows that lead to increased flame spread in multiple directions. The simultaneous flow and flame characterization enables the quantifications of flame-front propagation speed, unburned fuel-air mixture velocity ahead of flame front and local burning velocity at flame surface. Here the local burning velocity is referred to as laminar or turbulent flame speed. A simplified approach is introduced to derive integrated values for these quantities per crank-angle-degree, enabling the quantitative comparison of the trend-wise difference in these integrated metrics between fast and slow early-burn cycles. It is revealed that for the transition period, the CCV in the velocity magnitude of unburned fuel-air mixture ahead of the flame front accounts for nearly 50% to the variability of flame propagation speed. The burning velocity provides the remaining source of the flame propagation variability in this period. The flame propagation variations in the initial flame growth and fully turbulent periods are smaller than those in the transition period and are primarily dependent on the variability of large-scale flow features.  相似文献   

10.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

11.
激光空泡在文丘里管中运动的动力学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
李小磊  秦长剑  张会臣 《物理学报》2014,63(5):54707-054707
以水为工作介质,在不同文丘里管入口压力下,利用YAG激光器产生的激光轰击水中的金属靶材产生空泡,借助高速摄像系统记录激光空泡在文丘里管中的运动过程,并采用流体动力学模拟对文丘里管中的流场特性和空泡的溃灭特性进行分析.结果表明:激光空泡在文丘里管中的运动,其形状变化可分为产生阶段、挤压阶段、溃灭初始阶段和溃灭阶段等四个阶段.空泡的溃灭取决于流场状态,当流动为层流时,空泡不发生溃灭;当流动为湍流时,空泡发生溃灭,且湍流程度越剧烈,溃灭现象越显著.搭建的激光空泡生成与运动系统能够实现空泡的定点溃灭.  相似文献   

12.
First-order perturbation theory is employed to examine sound propagation in flowing media confined by a cylindrical waveguide. The use of perturbation theory allows examination of mode phase-speed changes due to any radially dependent flow w(r) as long as the flow magnitude is sufficiently small. The condition to be fulfilled is satisfied in the flow range: 0-0.3 m/s for the specific values of cylinder radius, ultrasound frequency, and sound speed analyzed in the present work [in the general case, however, the condition in Eq. (1) of the present work must be fulfilled]. This freedom of choice, i.e., the possibility to handle any radial flow profile, is used to analyze two flow profile cases: (1) where w(r) is a linear combination of a laminar flow profile and a flat profile corresponding to turbulent flow, and (2) where w(r) is a linear combination of a laminar flow profile and a more realistic logarithmic-dependent turbulent flow profile. In both cases, it is shown that large errors may result in ultrasound flow measurements if several modes are excited by the transmitting transducer, and that a logarithmic flow profile in the turbulent regime leads to somewhat larger measurement errors at high flow values as compared to assuming a simple flat profile in the turbulent regime.  相似文献   

13.
Temperature measurements have been performed in the vertical access pit of an underground quarry. During autumn, air avalanches induce an initial thermal feedback and a stationary mixing state characterized by spatially coherent broad-band fluctuations with a standard deviation of about 0.2 degrees C, linearly increasing with the inside-minus-outside temperature difference. Phase changes of water are shown to contribute to the onset condition, the feedback, and the stationary mixing state. This experiment may give insight on turbulent thermal and compositional convection with nonadiabatic boundaries.  相似文献   

14.
为了研究初生空化流动形态及其紊流流场结构,采用高速录像技术观察了绕Clark-Y型水翼初生空化的空化形态,应用LDV分别测量了无空化和初生空化条件下的紊流流场分布.结果表明,绕水翼小攻角无分离流动区域的初生空化形态呈游离发夹涡型空泡团结构,但其具有和单泡相同的发展过程;初生空化和无空化紊流流场的速度和紊流强度没有发现有规律性的差异,初生游离型空穴的形成与发展过程,对雷诺平均流场没有显著的影响.  相似文献   

15.
We characterise the properties of unstably stratified homogeneous turbulence by means of high-resolution direct numerical simulations and a two-point statistical spectral model based on a quasi-normal closure proposed by Burlot et al. Both approaches agree very well regarding the evolution of one- and two-point turbulent statistics, showing that the model is valid at even higher Reynolds numbers than previously considered. From a parametric study with different initial conditions, we confirm that the energy distribution at large scale influences strongly the late time dynamics of the flow. In particular, we assess the existence of backscatter transfer of energy, and evaluate its role in the growth rate of several turbulent quantities. Moreover, thanks to the statistical model, we analyse the scale-by-scale anisotropy of the flow through the decomposition of turbulent spectra in terms of directional anisotropy and polarisation anisotropy, for a refined characterisation of the structure of the flow which is strongly anisotropic in the large scales. This also allows us to study how isotropy is restored in the inertial scales.  相似文献   

16.
We study the fundamental diagram for traffic flow of vehicular mixture on a multi-lane highway. We present the car-following model of multi-lane traffic in which slow and fast vehicles flow with changing lanes. We investigate the traffic states of the vehicular mixture under the periodic boundary. Two values of the current appear at a density and two current curves are obtained. Vehicles move with changing lanes in the traffic state of high current, while vehicles move without changing lanes in the traffic state of low current. They depend on the density, the fraction of slow vehicles, and the initial condition. In the high-current curve, the jamming transition between the free flow and the jammed state occurs at a low density. The fundamental diagrams (current-density diagrams) are shown for the single-lane, two-lane, three-lane, and four-lane traffics.  相似文献   

17.
It is shown that ordered turbulent structures are organized in a turbulent medium when the time of flow mixing gets larger than the time of the energy exchange between turbulent pulsations. Transitions of the weak turbulence in a partially ordered state (moderate turbulence) are considered for the cases of beam-plasma, current-convective and drift instabilities.  相似文献   

18.
We study turbulent flow of a conducting liquid in a uniform external magnetic field. It is shown that intense helicity generation is possible in the presence of a mean shear flow. It is noted that even though the mean helicity of the initial flow can be zero, the presence of internal topological structure of the flow, for example the presence of helicity of different signs at different scales, is nevertheless necessary for helicity generation. Zh. éksp. Teor. Fiz. 114, 946–955 (September 1998)  相似文献   

19.
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.  相似文献   

20.
1前言在核能、航天等技术领域和能源、动力、石油化工等工业过程都存在泡状流现象,其中绝大多数的泡状流流动状态为湍流,因此对湍流泡状流进行深入研究极为必要。近年来Lee[1]、Lopez de Bertodano[2,3]等提出了一些多维的湍流输运的双流...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号