首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new universality class of quantum criticality emerging in itinerant electron systems with strong local electron correlations is discussed. The quantum criticality of a Ce- or Yb-valence transition gives us a unified explanation for unconventional criticality commonly observed in heavy fermion metals such as YbRh(2)Si(2), β-YbAlB(4), YbCu(5-x)Al(x), and CeIrIn(5). The key origin is due to the locality of the critical valence fluctuation mode emerging near the quantum critical end point of the first-order valence transition, which is caused by strong electron correlations for f electrons. The wider relevance of this new criticality and important future measurements to uncover its origin are also discussed.  相似文献   

2.
Experimental results involving the substitution of U atoms by Gd and Dy in the spin fluctuation system UAl2 are studied in terms of the theory proposed by Doniach and Wohlfarth. Besides the intraband f-f Coulomb interaction, the model contains the Zener coupling between localized 4f spins and itinerant 5f states. The induced effective f-f interaction increases the proximity to a magnetic instability.  相似文献   

3.
A theory for the mixed valence state of rare-earth compounds is presented. It includes the following features: (1) two types of electronic states-localized, highly correlated states and itinerant, non-correlated states; (2) a very strong Coulomb repulsion between localized states in the same site; (3) a Coulomb interaction between localized and itinerant states which drives the phase transition; and (4) hybridization between localized and itinerant states which produces the mixed valence state. It is shown that this model produces (a) at T = 0, a variation in the number of localized electrons which may vary in a smooth or in a discontinuous fashion as a function of pressure or alloying; (b) transitions at finite temperature which terminate in a classical critical point. Qualitative agreement with experiment is an encouraging feature of the model.  相似文献   

4.
5.
Abstract

The UAI2, UAI2, AND UAI4 compounds have been studied by high pressure X-ray diffraction up to a maximum pressure of ~ 35 GPa. The compressibility behaviour of UAI2 has been found to be consistent with the itinerant 5f states, whereas that of UAI2 and UAI4, indicate a more localized nature. Further, UAI2 has been found to undergo a structural transition at ~ 11 GPa and the structure of the high pressure phase has been identified to be of MgNi2 type with space group P63/mmc. The structure of UAI2 at ambient pressure is of MgCu2 type with space group Fd3m. From the electronic considerations, for instance, free electrons per atom ratio e/a, it is anticipated that it may transform back to MgCu2 type structure at still higher pressures. On similar considerations, it is expected that most of the AB2 type Laves phase compounds of the ‘f’ electron systems may undergo the structural sequence: MgCu2 – MgZn2 (or MgNi2) – MgCu2 due to increased delocalization of their ‘f’ electron states.  相似文献   

6.
The electron affinity of cerium has been measured using laser photodetachment electron spectroscopy. The electron affinity of Ce(1G4) was determined to be 0.955 +/- 0.026 eV. The data also show that Ce- has at least two bound excited states with binding energies of 0.921 +/- 0.025 eV and 0.819 +/- 0.027 eV relative to the (1G4) ground state of the cerium atom. The present experimental measurements are compared to recent calculations of the energy levels of Ce-. Strong disagreement with the most recent theoretical atomic structure calculations highlights the complicated nature of this particular lanthanide.  相似文献   

7.
A. P. Murani 《Pramana》2008,71(4):859-867
Neutron scattering data, using neutrons of incident energies as high as 2 eV, on α-Ce and α-Ce-like systems such as CeRh2, CeNi2, CeFe2, CeRu2, and many others that point clearly to the substantially localized 4f electronic state in these systems are reviewed. The present interpretation is contrary to the widely held view that the 4f electrons in these systems form a narrow itinerant electron 4f band.   相似文献   

8.
The electronic structure of the first Pu-based superconductor PuCoGa5 is explored using photoelectron spectroscopy and a novel theoretical scheme. Exceptional agreement between calculation and experiment defines a path forward for understanding the electronic structure aspects of Pu-based materials. The photoemission results show two separate regions of 5f electron spectral intensity, one at the Fermi energy and another centered 1.2 eV below the Fermi level. The results for PuCoGa5 clearly indicate 5f electron behavior on the threshold between localized and itinerant. Comparisons to delta phase Pu metal show a broader framework for understanding the fundamental electronic properties of the Pu 5f levels in general within two configurations, one localized and one itinerant.  相似文献   

9.
The partially ionized plasma is described by a model Hamiltonian containing bound (localized) as well as orthogonalized free (itinerant) electron states. The equations of balance for the single particle states are given, and the correlation functions arising in the equations of balance are treatet in the Born approximation. The conductivity is obtained with the aid of the Kohler variational principle. The electron density dependence of the conductivity is presented for different values of the bound state energy level and of the temperature.  相似文献   

10.
Spin- and angle-resolved photoelectron spectroscopy was applied for studies of electronic and magnetic structures of Eu/Gd and Ce/Fe. Ferromagnetic coupling of 4f moments of Eu and Gd was found in the 1 ML Eu/Gd(0 0 0 1) system with high net Eu magnetization at low temperatures reflected by a spin polarization of 15% of the Eu 4f state. In case of the 1 ML Ce/Fe(1 1 0) system the antiparallel orientation of the Ce 4f spins with respect to the magnetization direction of the Fe substrate was observed. Very different shapes of the spin-up and spin-down Ce 4f spectral weights can be explained within periodic Anderson model by spin-dependent hybridization between Ce localized 4f and itinerant valence band states.  相似文献   

11.
We report dc-magnetization measurements on YbRh2Si2 at temperatures down to 0.04 K, magnetic fields B< or =11.5 T, and under hydrostatic pressure P< or =1.3 GPa. At ambient pressure a kink at B* =9.9 T indicates a new type of field-induced transition from an itinerant to a localized 4f state. This transition is different from the metamagnetic transition observed in other heavy-fermion compounds, as here ferromagnetic rather than antiferromagnetic correlations dominate below B*. Hydrostatic pressure experiments reveal a clear correspondence of B* to the characteristic spin fluctuation temperature determined from specific heat.  相似文献   

12.
The antiferromagnetism in Ru(2)MnGe can be suppressed by the substitution of V by Mn and ferromagnetism appears. Synchrotron-based magnetic Compton scattering experiments are used in order to investigates the role of 3d electrons in the indirect/direct exchange interactions for the appearance of ferromagnetism. A small spin moment for the itinerant electron part on the magnetic Compton profile indicates that the metallic ferromagnet Ru(2)Mn(0.5)V(0.5)Ge has a weak indirect exchange interaction between the d-like and sp-like (itinerant) electrons. This suggests that the appearance of ferromagnetism is caused by the enhancement of the direct exchange interactions between d-d electrons in the Ru(2)MnGe Heusler compound. These findings indicate that the indirect exchange interaction between itinerant electrons and localized electrons is a significant key point for the appearance of ferromagnetism in this system.  相似文献   

13.
Using a hybrid method based on fermionic diagonalization and classical Monte Carlo techniques, we investigate the interplay between itinerant and localized spins, with competing double- and superexchange interactions, on a honeycomb lattice. For moderate superexchange, a geometrically frustrated triangular lattice of hexagons forms spontaneously. For slightly larger superexchange a dimerized ground state is stable that has macroscopic degeneracy. The presence of these states on a nonfrustrated honeycomb lattice highlights novel phenomena in this itinerant electron system: emergent geometrical frustration and degeneracy related to a symmetry intermediate between local and global.  相似文献   

14.
Fe/Ce multilayers are magnetically soft with coercive fields of a few Oersteds. In this artificial system, the itinerant 5d electrons of Ce are magnetically polarized by hybridization with the spin–split 3d states of Fe. To obtain an insight into the magnetization reversal process, the element selectivity of X-ray magnetic circular dichroism was used to measure the magnetization of the Ce-5d electrons as a function of an applied magnetic field. Comparison with the magnetization curves studied by the magneto-optic Kerr effect, which averages over the whole system, revealed that the coercivity in the hysteresis of the ordered Ce-5d moments is reduced by 50%. We propose that this is an effect of the magnetically disturbed interface or of the complex non-collinear magnetic structure of the Ce layers detected by recent experiments of X-ray resonant magnetic scattering. The results are compared to the X-ray dichroic and Kerr hysteresis loops of the multilayers Fe/La/Ce/La and Fe/CeH2−δ. These systems are magnetically harder and their coercivities are identical.  相似文献   

15.

At the interfaces between the metallic electrodes and barrier in magnetic tunnel junctions it is possible for localized states to form which are orthogonal to the itinerant states for the junction, as well as resonant states that can form at the interfaces. These states form highly conducting paths across the barrier when their orbitals point directly into the barrier; these paths are in addition to those formed by the itinerant states across the entire junction. Most calculations of transport in magnetic tunnel junctions are made with the assumptions that the transverse momentum of the tunnelling electrons is conserved, in which case the itinerant electron states remain orthogonal to localized states. In principle it is possible to include diffuse scattering in both the bulk of the electrodes and the barrier so that the transverse momentum is not conserved, as well as the processes that couple localized states at the electrode-barrier interface to the itinerant states in the bulk of the electrodes. However, including these effects leads to lengthy calculations. Therefore, to assess the conduction across the barrier through the localized states that exist in parallel to the itinerant states we propose an approximate scheme in which we calculate the conductance of only the barrier region. While we do not take explicit account of either of the effects mentioned above, we do calculate the tunnelling through all the states that exist at the electrode-barrier interfaces by placing reservoirs directly across the barriers. To calculate the current and magnetoresistance for magnetic tunnel junctions (the junction magnetoresistance (JMR)) we have used the lattice model developed by Caroli et al. The propagators, density of states and hopping integrals entering the expressions for the current are determined by using the spin polarized scalar-relativistic screened Korringa-Kohn-Rostoker method that has been adapted to layered structures. By using vacuum as the insulating barrier we have determined with no adjustable parameters the JMR in the linear response region of tunnel junctions with fcc Co(100), fccNi(100) and bcc Fe(100) as electrodes. The JMR ratios that we find for these metal/vacuum/metal junctions are comparable with those measured with alumina as the insulating barrier. For vacuum barriers we find that tunnelling currents have minority- spin polarization whereas the tunnelling currents for th se electrodes have been observed to be positively (majority) polarized for alumina barriers and minority polarized for SrTiO 3 barriers. In addition to determining the JMR ratios in linear response we have also determined how the magnetoresistance of magnetic tunnel junctions varies with a finite voltage bias applied across the junction. In particular we have found how the shape of the potential barrier is altered by the applied bias and how this affects the current. Comparisons with data as they become available will eventually determine whether our approximate scheme or the ballistic Landauer-Büttiker approach is better able to represent the features of the electronic structure that control tunnelling in magnetic tunnel junctions.  相似文献   

16.
吴毅  李鹏  吴中正  方圆  刘洋 《物理学进展》2022,42(3):96-120
重费米子材料作为一类典型的强关联电子体系,蕴含着非常规超导、奇异金属、量子临界、 磁有序、重电子态、关联拓扑态等新奇的量子态,而4f 电子在其中扮演着重要的作用。随着高分 辨角分辨光电子能谱和薄膜生长技术的发展,精确探测重费米子材料中4f 电子在能量/动量空间 的色散和谱权重成为了可能,这为从微观上理解这类材料中的电子关联效应和新奇量子现象提供 了重要的基础。本论文总结了几个典型的重费米子单晶和薄膜体系的电子态研究,包括Ce-115 体 系、CeCu2Si2、CeRh6Ge4 以及单晶 Ce 膜等。这些结果为理解重费米子体系中重电子态的形成 和温度演化、近藤杂化的能带/动量依赖、重电子能带与超导的关系、近藤效应与磁性和其它量子 态的竞争、4f 电子的维度调控等重要物理问题提供了谱学证据。  相似文献   

17.
We report muon spin rotation spectra in the narrow-gap semiconductors FeGa(3) and FeSb(2) consistent with a narrow band of small spin polarons (SPs). The characteristic sizes obtained for these SPs are R(FeGa(3)) ≈ 0.3-0.6 nm and R(FeSb (2)) ≈ 0.3 nm, respectively. Such SP states are expected to originate from the exchange correlations between localized and itinerant electrons. Our data suggest that SP bands are formed at low temperature, but are destroyed by thermal fluctuations above 10 K in FeGa(3) and above 7 K in FeSb(2). Formation of such SP band states can explain many of the low-temperature properties of these materials.  相似文献   

18.
Density functional theory applied to Pb-Pu superlattices reveals two competing phases separated by a Mott transition between itinerant and localized 5f electrons. One phase, corresponding to Pu's bulk alpha phase, exhibits paired up Pu planes, thereby broadening the 5f bandwidth. Allowing spin polarization to emulate the energetics of electron correlation leads to another phase with larger volume, narrow 5f bandwidth, and more uniform local crystal structure, similar to bulk fcc Pu.  相似文献   

19.
We report an electrical transport study in Ca2-xSrxRuO4 single crystals at high magnetic fields (B). For x=0.2, the Hall constant Rxy decreases sharply at an anisotropic metamagnetic transition, reaching its value for Sr2RuO4 at high fields. A sharp decrease in the coefficient of the resistivity T2 term and a change in the structure of the angular magnetoresistance oscillations for B rotating in the planes confirms the reconstruction of the Fermi surface. Our observations and local-density-approximation calculations indicate a strong dependence of the Fermi surface on Ca concentration and suggest the coexistence of itinerant and localized electronic states in single layered ruthenates.  相似文献   

20.
In single crystals of YbCo2Zn20 intermetallic compound, two coexisting types of electron spin resonance signals related to the localized magnetic moments of cobalt and to itinerant electrons have been observed in the 4.2–300 K temperature range. It is shown that the relative contribution of itinerant electrons to the total magnetization does not exceed 9%. We argue that the electron dynamics in YbCo2Zn20 and YbCuAl heavy fermion systems is determined by the effects produced by the magnetic subsystem of the localized 3d-electrons. We also discuss general aspects of the electron spin resonance spectroscopy in underdoped ytterbium-based intermetallics and the spectral manifestations of the interplay between the efficiency of the hybridization of f-electrons with the electrons filling outer atomic shells, crystal field effects, and the effects related to the proximity to the quantum critical point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号