首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.  相似文献   

2.
We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice. In particular, by introducing a quantum opto-electro-mechanical interface, we are able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of the topological qubits and the scalability of the superconducting qubits in this hybrid architecture.  相似文献   

3.
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.  相似文献   

4.
We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.  相似文献   

5.
丛山桦  王轶文  孙国柱  陈健  于扬  吴培亨 《中国物理 B》2011,20(5):50316-050316
We have observed the macroscopic resonant tunneling of magnetic flux between macroscopically distinct quantum states in a superconducting flux qubit.The dependences of the macroscopic resonant tunneling on the barrier height of the potential well,the flux bias and the initial state are investigated.Detailed measurements of the tunneling rate as a function of the flux bias reveal the feature of the quantum noise in the superconducting flux qubit.  相似文献   

6.
We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynarnics (QED) system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR). It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.  相似文献   

7.
We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and backaction are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured relaxation times of the order of 80 micros.  相似文献   

8.
The interaction of solid-state qubits with environmental degrees of freedom strongly affects the qubit dynamics, and leads to decoherence. In quantum information processing with solid-state qubits, decoherence significantly limits the performances of such devices. Therefore, it is necessary to fully understand the mechanisms that lead to decoherence. In this review, we discuss how decoherence affects two of the most successful realizations of solid-state qubits, namely, spin qubits and superconducting qubits. In the former, the qubit is encoded in the spin 1/2 of the electron, and it is implemented by confining the electron spin in a semiconductor quantum dot. Superconducting devices show quantum behaviour at low temperatures, and the qubit is encoded in the two lowest energy levels of a superconducting circuit. The electron spin in a quantum dot has two main decoherence channels, a (Markovian) phonon-assisted relaxation channel, due to the presence of a spin–orbit interaction, and a (non-Markovian) spin bath constituted by the spins of the nuclei in the quantum dot that interact with the electron spin via the hyperfine interaction. In a superconducting qubit, decoherence takes place as a result of fluctuations in the control parameters, such as bias currents, applied flux and bias voltages, and via losses in the dissipative circuit elements.  相似文献   

9.
We propose a scheme for generating squeezed states based on a superconducting hybrid system.Our system consists of a nanomechanical resonator,a superconducting flux qubit,and a superconducting transmission line resonator.Using our proposal,one can easily generate the squeezed states of the nanomechanical resonator.In our scheme,the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy.The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state,which can greatly decrease the effect of the decoherence of the flux qubit on the squeezed efficiency.  相似文献   

10.
Jianfei Chen 《中国物理 B》2022,31(8):88501-088501
The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.  相似文献   

11.
Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi =- 78 ns and energy relaxation time T~ = 315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.  相似文献   

12.
《Physics letters. A》2019,383(34):125979
The critical current of a new structure, the superconducting differential double contour interferometer (DDCI), investigated recently, depends on the parity of the sum of quantum numbers of the two superconducting loops connected in two points by two Josephson junctions. The theory confirms that the DDCI structure can be used for the ideal readout of quantum states of the flux qubit. Large jumps in the critical current and voltage enables to observe continuously the change in time the state of the flux qubit. Such observations can have fundamental importance for the investigation of macroscopic quantum systems with strongly discrete spectrum such as the flux qubit. The DDCI structure can also be used for precise measurement of a very weak magnetic field.  相似文献   

13.
A theoretical scheme for the generation of maximally entangled states of two superconducting flux qubits via their sequential interaction with a monochromatic quantum field is presented. The coupling of the qubits with the quantized field can be tuned on and off resonance by modulating the effective Josephson energy of each qubit via an externally applied magnetic flux. The system operates in such a way as to transfer the entanglement from a bipartite field-qubit subsystem to the two qubits. This scheme is attractive in view of the implementation of practical quantum processing systems.  相似文献   

14.
We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillation: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We also show that we can detect the state of the oscillator with the qubit and thereby obtained evidence of level quantization of the LC circuit. Our results support the idea of using oscillators as couplers of solid-state qubits.  相似文献   

15.
姜伟  于扬  韦联福 《中国物理 B》2011,20(8):80307-080307
We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconduct-ing quantum interference device (SQUID).The obtained analytical results indicate that the measurement probability is frequency-dependent in a short time scale and has a close relationship with the measurement-induced dephasing.Furthermore,when the detuning between the driven and bare resonator equals the coupling strength,we can obtain the maximum measurement rate that is determined by the character of the noise in the SQUID.Finally,we analysed the mixed effect caused by coupling between the non-diagonal term and the external variable.It is found that the initial information of the qubit is destroyed due to quantum tunneling between the qubit states.  相似文献   

16.
李雪琴  赵云芳  唐艳妮  杨卫军 《物理学报》2018,67(7):70302-070302
量子纠缠是实现量子计算和量子通信的核心基础,本文提出了在金刚石氮-空位色心(NV centers)自旋系综与超导量子电路耦合的混合系统中实现两个分离量子节点之间纠缠的理论方案.在该混合系统中,把金刚石NV centers自旋系综和与之耦合的超导共面谐振器视为一个量子节点,两个量子节点之间通过一个空的超导共面谐振器连接.具有较长相干时间的NV centers自旋系综作为一个量子存储器,用于制备、存储和发送量子信息;易于外部操控的超导量子电路可执行量子逻辑门操作,快速调控量子信息.为了实现两个分离量子节点之间的纠缠,首先对系统的哈密顿量进行正则变换,将其等价为两个NV centers自旋系综与同一个超导共面谐振器之间的JC耦合;然后采用NV centers自旋-光子混合比特编码的方式,通过调节超导共面谐振器的谐振频率,精确控制体系演化时间,高保真度地实现了两个分离量子节点之间的量子纠缠.本方案还可以进一步扩展和集成,用于构建多节点纠缠的分布式量子网络.  相似文献   

17.
苏杰  王继锁  张晓燕  梁宝龙 《中国物理 B》2010,19(5):57301-057301
For a mesoscopic radio frequency superconducting quantum interference device (rfSQUID), at a degeneracy point, the system reduces to a quantum two-state system which can be used as a flux qubit. When the noise environment is equivalent to a harmonic oscillators bath, by virtue of an operator-norm measure for the short time decoherence, this paper investigates the initial decoherence of the flux qubit operating in the ohmic noise environment and illustrates its property by means of the numerical evaluation.  相似文献   

18.
We study a readout scheme of a superconducting flux qubit state with a Cooper pair box as a transmon. The qubit states consist of the superpositions of two degenerate states where the charge and phase degrees of freedom are entangled. Owing to the robustness of the transmon against external fluctuations, our readout scheme enables the quantum non-demolition and single-shot measurement of flux qubit states. The qubit state readout can be performed by using the nonlinear Josephson amplifiers after a π/2 rotation driven by an ac electric field.  相似文献   

19.
Parametric control of a superconducting flux qubit has been achieved by using two-frequency microwave pulses. We have observed Rabi oscillations stemming from parametric transitions between the qubit states when the sum of the two microwave frequencies or the difference between them matches the qubit Larmor frequency. We have also observed multiphoton Rabi oscillations corresponding to one- to four-photon resonances by applying single-frequency microwave pulses. The parametric control demonstrated in this work widens the frequency range of microwaves for controlling the qubit and offers a high quality testing ground for exploring nonlinear quantum phenomena of macroscopically distinct states.  相似文献   

20.
Sisyphus amplification, familiar from quantum optics, has recently been reported as a mechanism to explain the enhanced quality factor of a classical resonant (tank) circuit coupled to a superconducting flux qubit. Here we present data from a coupled system, comprising a quantum mechanical rf SQUID (flux qubit) reactively monitored by an ultrahigh quality factor noise driven rf resonator and excited by microwaves. The system exhibits enhancement of the tank-circuit resonance, bringing it significantly closer (within 1%) to the lasing limit, than previously reported results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号