首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed highly stereoselective methods to isomerize electron-deficient propargylic alcohols to E-enones under mild conditions (EWG = electron-withdrawing group). Among weak bases we screened, catalytic (10-20 mol %) 1,4-diazabicyclo[2.2.2]octane (DABCO) was found to be effective in most cases. When the substrate is conjugated with an amide, the addition of sodium acetate catalyzed the isomerization.  相似文献   

2.
The dehydroxy-fluorination of propargylic alcohols occurs with a complete regiocontrol and a good to complete stereocontrol, in contrast to the reactions performed on allylic alcohols. The gem-difluorination of propargylic ketones occurs smoothly in contrast to enones which have a very low reactivity towards DAST or Deoxo-fluor™. It is proposed that the large differences in the stabilization energies of the key carbonium ion intermediates (either propargylic or allylic) could explain these strong differences in reactivity during nucleophilic fluorination. The calculations of isodesmic reactions are in full agreement with this proposal.  相似文献   

3.
Tanaka K  Shoji T 《Organic letters》2005,7(16):3561-3563
We have developed a cationic rhodium(I)/BINAP complex-catalyzed isomerization of secondary propargylic alcohols to alpha,beta-enones. The asymmetric variant of this reaction, a kinetic resolution of secondary propargylic alcohols, was also developed with good selectivity. The mechanistic study revealed that the isomerization proceeds through intramolecular 1,3- and 1,2-hydrogen migration pathways. [reaction: see text]  相似文献   

4.
Meyer-Schuster rearrangements of propargylic alcohols take place readily at room temperature in toluene with 1-2 mol % PPh(3)AuNTf(2), in the presence of 0.2 equiv of 4-methoxyphenylboronic acid or 1 equiv of methanol. Good to excellent yields of enones can be obtained from secondary and tertiary alcohols, with high selectivity for the E-alkene in most cases. A one-pot procedure for the conversion of primary propargylic alcohols into β-arylketones was also developed, via Meyer-Schuster rearrangement followed by Pd-catalayzed addition of a boronic acid.  相似文献   

5.
Additions of terminal alkynes to electrophiles are important transformations in organic chemistry. Generally, activated terminal alkynes react with epoxides in an S(N)2 fashion to form homopropargylic alcohols. We have developed a new synthetic method to form propargylic alcohols from epoxides and terminal alkynes via 1,2-shifts. This method involves cationic zirconium acetylides as both the activator of epoxides and nucleophiles. Due to the mild conditions to pre-activate alkynes with silver nitrate, this synthetic method is useful for both electron-rich and electron-deficient alkynes with other acid- and base-sensitive functional groups.  相似文献   

6.
A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer-Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4-methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one-pot procedure with the addition of a nucleophile to the resulting terminal enone, to give β-aryl, β-alkoxy, β-amino or β-sulfido ketones. Propargylic alcohols bearing an adjacent electron-rich aryl group can also undergo silver-catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt.  相似文献   

7.
The first example of simple Re(2)O(7)-catalyzed direct dehydrative coupling between allylic alcohols with electron-deficient amines has been achieved under mild and open flask conditions. The protocol has also been successfully applied to benzylic and propargylic alcohols. The mechanistic proof for the S(N)1-type process has also been provided.  相似文献   

8.
A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer–Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4‐methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one‐pot procedure with the addition of a nucleophile to the resulting terminal enone, to give β‐aryl, β‐alkoxy, β‐amino or β‐sulfido ketones. Propargylic alcohols bearing an adjacent electron‐rich aryl group can also undergo silver‐catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt.  相似文献   

9.
Catalytic ruthenium complexes in conjunction with an indium cocatalyst and Bronsted acid isomerize primary and secondary propargylic alcohols in good yields to provide trans enals and enones exclusively. Readily available indenylbis(triphenylphosphine)ruthenium chloride, in the presence of indium triflate and camphorsulfonic acid, gives the best turnover numbers and reactivity with the broadest range of substrates. Deuterium labeling experiments suggest that the process occurs through propargylic hydride migration followed by protic cleavage of the resultant vinylruthenium intermediate. Application of this method to the synthesis of leukotriene B4 demonstrates its utility and extraordinary selectivity.  相似文献   

10.
The synthesis of optically active secondary and tertiary propargylic alcohols was accomplished by addition of lithium acetylide to chiral β-sulfinyl enones. Only a stoichiometric amount of the lithium acetylide was required and various substituents were tolerated. This reaction could be applied to substrates consisting of both ketones and aldehydes in high yields and excellent diastereoselectivities.  相似文献   

11.
Trifluoromethylation of propargylic alcohols to provide (Z)‐α‐trifluoromethylated enones and β‐unsubstituted α‐trifluoromethylated enones proceeded with high yield and selectivity in the presence of CuI/Re2O7. The Z isomer was formed under kinetic control, though it is less stable than the E isomer in terms of steric repulsion.  相似文献   

12.
The 16e(-) derivative [Ru(eta3-2-C3H4Me)(CO)(dppf)][SbF6] catalyzes: (i) the propargylic substitution reaction of 1,1-diphenyl-2-propyn-1-ol with alcohols to produce propargylic ethers, and (ii) the formal isomerization of 1,1-diphenyl-2-propyn-1-ol into 3,3-diphenyl-2-propenal.  相似文献   

13.
An effective asymmetric route to functionalized 1,6‐ and 1,7‐enynes has been developed based on a direct cross‐aldol reaction between ω‐unsaturated aldehydes and propargylic aldehydes (α,β‐ynals) promoted by combined α,α‐dialkylprolinol ether/Brønsted acid catalysis. This synergistic activation strategy is key to accessing the corresponding aldol adducts with high stereoselectivity, both enantio‐ and diastereoselectivity. The aldol reaction also proceeds well with propargylic ketones (α,β‐ynones) thus enabling a stereocontrolled access to the corresponding tertiary alcohols. The utility of these adducts, which are difficult to prepare through standard methodology, is demonstrated by their transformation into trisubstituted bicyclic enones using standard Pauson–Khand conditions.  相似文献   

14.
Optically active 2,5,6,6- and 2,4,4,5-tetraalkylcyclohex-2-en-1-ones ((+)- 2a – d and (?)- 5a – d ), important building blocks for flowery- and woody-like odorants, have been prepared. Compounds (+)- 2a – d and (?)- 5a – d were obtained by ozonolysis of the corresponding cyclopentenic precursors, followed by intramolecular aldol condensation. Alternatively, enones (+)- 2a – d were reduced to the corresponding allylic alcohols ad converted to enones (-)- 5a – d via acidic isomerization and oxidation. 13C-NMR assignments are presented.  相似文献   

15.
Trost BM  Breder A  Kai B 《Organic letters》2012,14(7):1708-1711
An atom-economical procedure for the direct synthesis of cycloalkanes from propargyl alcohols is reported. This high-yielding one-pot process involves a sequence consisting of a Ru-catalyzed redox isomerization of ynols into enones or an enal followed by an intramolecular Michael addition of a variety of carbon nucleophiles. Furthermore, an asymmetric variant of this protocol realized by the aid of a chiral nonracemic diamine catalyst, which provides the cyclization products in up to 97% ee, is presented.  相似文献   

16.
Carbonyl rhenium(I) complexes are efficient catalysts for the regioselective isomerization of terminal propargylic alcohols into α,β-unsaturated aldehydes or ketones which can be used as an unprecedented recyclable catalytic system (up to 10 consecutive runs) in the ionic liquid [BMIM][PF(6)].  相似文献   

17.
We have previously clarified that the strongly electron-withdrawing CF3 group nicely affected the base-mediated proton shift of CF3-containing propargylic or allylic alcohols to afford the corresponding α,β-unsaturated or saturated ketones, respectively, which was applied this time to the Claisen rearrangement after O-allylation of the allylic alcohols with a CF3 group, followed by isomerization to the corresponding allyl vinyl ethers via the proton shift, enabling the desired rearrangement in a tandem fashion, or in a stepwise manner, the latter of which was proved to have attained an excellent diastereoselectivity with the aid of a palladium catalyst.  相似文献   

18.
Propargylic alcohols are versatile precursors to many organic molecules including natural products and pharmaceutical compounds.[1] In our continuing interest in the development of practical methods for synthesis of ferrocene derivatives, we decided to investigate the efficiencies of ferrocenylacetylene addition to aromatic aldehydes under t-BuOKcatalyzed condition.[2] Interestingly, we found that the usually reliable coupling reaction between terminal alkyne of type 1 and aromatic aldehydes of type 2 does not furnish the expected propargylic alcohols, but that the isomeric aryl enones 3are found in high yield and very short reaction time (10~20 min). This provided a promising protocol for preparation of ferrocenyl chalcones in a practical, economical and mild sense compared with the traditional method. To the best of our knowledge, this unusual reaction was first observed for the addition of ferrocenylacetylene to aldehyde in a base-catalyzed manner (Eq. 1).  相似文献   

19.
A novel copper(I)‐catalyzed three‐component reaction for the efficient synthesis of 3‐amino‐2‐pyrones and 2,5‐dihydrofurans from propargyl alcohols, aldehydes, and amines has been developed. The starting materials are easily available and the scope of this method is broad. Through mechanistic studies, it is believed that the three‐component reaction consists of an A3‐coupling to propargylic amine, alkyne–allene isomerization, and intramolecular cyclization of the allenol to form a furan. In case of using ethyl glyoxalate as the aldehyde, a ring‐opening, lactonization, and isomerization process affords the 3‐amino‐2‐pyrones.  相似文献   

20.
The Sonogashira coupling of electron-deficient (hetero)aryl halides 1 and (hetero)aryl or alkenyl 1-propargyl alcohols 2 does not terminate at the stage of the expected internal propargyl alcohols, but rather gives rise to the formation of alpha,beta-unsaturated ketones 3 with a variety of acceptor substituents. This new domino reaction, a coupling-isomerization reaction (CIR), can be rationalized as a sequence of rapid Pd/Cu-catalyzed alkynylation followed by a slow amine-base-catalyzed propargyl alcohol-enone isomerization. Performing the CIR in deuterated protic solvents or with a selectively deuterated propargyl alcohol revealed that the base-catalyzed isomerization step proceeds through a formal 1,3-H shift with minimal H/D exchange with the surrounding solvent. Additionally, 19F NMR kinetic measurements on the isomerization step with the fluorinated propargyl alcohol 4 r support the mechanistic rationale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号