首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is demonstrated that single-molecule tracking of a fluorescently labeled protein undergoing transient binding to model membranes presents a useful method of obtaining fluid properties. The labeled ACBP protein was tracked during its binding to free-standing giant unilamellar vesicles (GUVs) and supported bilayers prepared from the GUVs in the same environment. The analysis of images that are blurred as a result of fast probe diffusion was discussed. An examination of the lateral diffusion trajectories revealed a homogeneous diffusion on the top segments of the GUVs with D = 6.9 +/- 0.3 microm(2)/s. The supported bilayer experiments revealed two diffusion processes, one with Df = 3.1 +/- 0.4 microm(2)/s and the other with Ds = 0.078 +/- 0.001 microm(2)/s. The 2-fold difference in the lipid bilayer mobility for the free-standing and fast components in the supported bilayers is attributed to the known effect of frictional coupling with the solid support. The slow mobile fraction in the bilayer is suggested to be associated with the migration of pore-like structures, originating from the interaction of the membrane with the glass support.  相似文献   

2.
Planar supported lipid bilayers have attracted immense interest for their properties as model cell membranes and for potential applications in biosensors and lab-on-a-chip devices. We report the formation of fluid planar biomembranes on hydrophilic silica aerogels and xerogels. Scanning electron microscopy results showed the presence of interconnected silica beads of approximately 10-25 nm in diameter and nanoscale open pores of comparable size for the aerogel and grain size of approximately 36-104 nm with approximately 9-24 nm diameter pores for the xerogel. When the aerogel/xerogel was prehydrated and then allowed to incubate in l-alpha-phosphatidylcholine (egg yolk PC) unilamellar vesicle (approximately 30 nm diameter) solution, lipid bilayers were formed due to the favorable interaction of vesicles with the hydroxyl-abundant silica surface. Lateral mobility of labeled lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine was retained in the membranes. A diffusion coefficient of 0.61 +/- 0.22 microm(2)/s was determined from fluorescence recovery after photobleaching analysis for membranes on aerogels, compared to 2.46 +/- 0.35 microm(2)/s on flat glass. Quartz crystal microbalance-dissipation was utilized to monitor the kinetics of the irreversible adsorption and fusion of vesicles into bilayers on xerogel thin films.  相似文献   

3.
The diffusion of OH, HO2, and O3 in He, and of OH in air, has been investigated using a coated-wall flow tube reactor coupled to a chemical ionization mass spectrometry. The diffusion coefficients were determined from measurements of the loss of the reactive species to the flow tube wall as a function of pressure. On the basis of the experimental results, D(OH-He) = 662 +/- 33 Torr cm2 s-1, D(OH-air) = 165 +/- 20 Torr cm2 s-1, D(HO2-He) = 430 +/- 30 Torr cm2 s-1, and D(O3-He) = 410 +/- 25 Torr cm2 s-1 at 296 K. We show that the measured values for OH and HO2 are in better agreement with measured values of their polar analogues (H2O and H2O2) compared with measured values of their nonpolar analogues (O and O2). The measured value for OH in air is 25% smaller than that for O (the nonpolar analogue). The difference between the measured value for HO2 and O2 (the nonpolar analogue) in air is expected to be even larger. Also we show that calculations of the diffusion coefficients based on Lennard-Jones potentials are in excellent agreement with the measurements. This gives further confidence that these calculations can be used to estimate accurate diffusion coefficients for conditions where laboratory data currently do not exist.  相似文献   

4.
By the use of [1H,15N] heteronuclear single quantum coherence (HSQC) 2D NMR spectroscopy and electrochemical methods we have determined the hydrolysis profile of the bifunctional dinuclear platinum complex [[trans-PtCl(15NH3)2]2(mu-15NH2(CH2)(6)15NH2)]2+ (1,1/t,t (n = 6), 15N-1), the prototype of a novel class of potential antitumor complexes. Reported are estimates for the rate and equilibrium constants for the first and second aquation steps, together with the acid dissociation constant (pKa1 approximately pKa2 approximately pKa3). The equilibrium constants determined by NMR at 25 and 37 degrees C (I = 0.1 M) were similar, pK1 approximately pK2 = 3.9 +/- 0.2, and from a chloride release experiment at 37 degrees C the values were found to be pK1 = 4.11 +/- 0.05 and pK2 = 4.2 +/- 0.5. The forward and reverse rate constants for aquation determined from this chloride release experiment were k1 = (8.5 +/- 0.3) x 10(-5) s-1 and k-1 = 0.91 +/- 0.06 M-1 s-1, where the model assumed that all the liberated chloride came from 1. When the second aquation step was also taken into account, the rate constants were k1 = (7.9 +/- 0.2) x 10(-5) s-1, k-1 = 1.18 +/- 0.06 M-1 s-1, k2 = (10.6 +/- 3.0) x 10(-4) s-1, k-2 = 1.5 +/- 0.6 M-1 s-1. The rate constants compare favorably with other complexes with the [PtCl(am(m)ine)3]+ moiety and indicate that the equilibrium of all these species favors the chloro form. A pKa value of 5.62 was determined for the diaquated species [[trans-Pt(15NH3)2(H2O)]2(mu-15NH2(CH2)(6)15NH2)]4+ (3) using [1H,15N] HSQC NMR spectroscopy. The speciation profile of 1 and its hydrolysis products under physiological conditions is explored.  相似文献   

5.
The synthesis of syn,anti-[Co(cyclen)en](ClO4)3 (1(ClO4)3) and syn,anti-[Co(cyclen)tn](ClO4)3 (2(ClO4)3) is reported, as are single-crystal X-ray structures for syn,anti-[Co(cyclen)(NH3)2](ClO4)3 (3(ClO4)3). 3(ClO4)3: orthorhombic, Pnma, a = 17.805(4) A, b = 12.123(3) A, c = 9.493(2) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.030. 1(ClO4)3: monoclinic, P2(1)/n, a = 8.892(2) A, b = 15.285(3) A, c = 15.466(3) A, alpha = 90 degrees, beta = 91.05(3) degrees, gamma = 90 degrees, Z = 4, R1 = 0.0657. 2Br3: orthorhombic, Pca2(1) a = 14.170(4) A, b = 10.623(3) A, c = 12.362(4) A, alpha = beta = gamma = 90 degrees, Z = 4, R1 = 0.0289. Rate constants for H/D exchange (D2O, I = 1.0 M, NaClO4, 25 degrees C) of the syn and anti NH protons (rate law: kobs = ko + kH[OD-]) and the apical NH, and the NH3 and NH2 protons (rate law: kobs = kH[OD-]) in the 1, 2, and 3 cations are reported. Deprotonation constants (K = [Co(cyclen-H)(diamine)2+]/[Co(cyclen)(diamine)3+][OH-]) were determined for 1 (5.5 +/- 0.5 M-1) and 2 (28 +/- 3 M-1). In alkaline solution 1, 2, and 3 hydrolyze to [Co(cyclen)(OH)2]+ via [Co(cyclen)(amine)OH)]2+ monodentates. Hydrolysis of 3 is two step: kobs(1) = kOH(1)[OH-], kobs(2) = ko + kOH(2)[OH-] (kOH(1) = (2.2 +/- 0.4) x 10(4) M-1 s-1, ko = (5.1 +/- 1.2) x 10(-4) s-1, kOH(2) = 1.0 +/- 0.1 M-1 s-1). Hydrolysis of 2 is biphasic: kobs(1) = k1K[OH-]/(1 + K[OH-] (k1 = 5.0 +/- 0.2 s-1, K = 28 M-1), kobs(2) = k2K2[OH-]/(1 + K2[OH-]) (k2 = 3.5 +/- 1.2 s-1, K2 = 1.2 +/- 0.8 M-1). Hydrolysis of 1 is monophasic: kobs = k1k2KK2[OH-]2/(1 + K[OH-1])(k-1 + k2K2[OH-]) (k1 = 0.035 +/- 0.004 s-1, k-1 = 2.9 +/- 0.6 s-1, K = 5.5 M-1, k2K2 = 4.0 M-1 s-1). The much slower rate of chelate ring-opening in 1, compared to loss of NH3 from 3, is rationalized in terms of a reduced ability of the former system to allow the bond angle expansion required to produce the SN1CB trigonal bipyramidal intermediate.  相似文献   

6.
Molecular dynamics (MD) simulations of heptane/vapor, hexadecane/vapor, water/vapor, hexadecane/water, and dipalmitoylphosphatidylcholine (DPPC) bilayers and monolayers are analyzed to determine the accuracy of treating long-range interactions in interfaces with the isotropic periodic sum (IPS) method. The method and cutoff (rc) dependences of surface tensions, density profiles, water dipole orientation, and electrostatic potential profiles are used as metrics. The water/vapor, heptane/vapor, and hexadecane/vapor interfaces are accurately and efficiently calculated with 2D IPS (rc=10 A). It is demonstrated that 3D IPS is not practical for any of the interfacial systems studied. However, the hybrid method PME/IPS [Particle Mesh Ewald for electrostatics and 3D IPS for Lennard-Jones (LJ) interactions] provides an efficient way to include both types of long-range forces in simulations of large liquid/vacuum and all liquid/liquid interfaces, including lipid monolayers and bilayers. A previously published pressure-based long-range LJ correction yields results similar to those of PME/IPS for liquid/liquid interfaces. The contributions to surface tension of LJ terms arising from interactions beyond 10 A range from 13 dyn/cm for the hexadecane/vapor interface to approximately 3 dyn/cm for hexadecane/water and DPPC bilayers and monolayers. Surface tensions of alkane/vapor, hexadecane/water, and DPPC monolayers based on the CHARMM lipid force fields agree very well with experiment, whereas surface tensions of the TIP3P and TIP4P-Ew water models underestimate experiment by 16 and 11 dyn/cm, respectively. Dipole potential drops (DeltaPsi) are less sensitive to long-range LJ interactions than surface tensions. However, DeltaPsi for the DPPC bilayer (845+/-3 mV proceeding from water to lipid) and water (547+/-2 mV for TIP4P-Ew and 521+/-3 mV for TIP3P) overestimate experiment by factors of 3 and 5, respectively, and represent expected deficiencies in nonpolarizable force fields.  相似文献   

7.
In an effort to use model fluid membranes for immunological studies, we compared the formation of planar phospholipid bilayers supported on silicon dioxide surfaces with and without incorporation of glycolipids as the antigen for in situ antibody binding. Dynamic light scattering measurements did not differentiate the hydrodynamic volumes of extruded small unilamellar vesicles (E-SUVs) containing physiologically relevant concentrations (0.5-5 mol%) of monosialoganglioside GM1 (GM1) from exclusive egg yolk L-alpha-phosphatidylcholine (egg PC) E-SUVs. However, quantifiable differences in deposition mass and dissipative energy loss emerged in the transformation of 5 mol% GM1/95 mol% egg PC E-SUVs to planar supported lipid bilayers (PSLBs) by vesicle fusion on thermally evaporated SiO2, as monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. Compared to the 100 mol% egg PC bilayers on the same surface, E-SUVs containing 5 mol% GM1 reached a approximately 12% higher mass and a lower dissipative energy loss during bilayer transformation. PSLBs with 5 mol% GM1 are approximately 18% heavier than 100 mol% egg PC and approximately 11% smaller in projected area per lipid, indicating an increased rigidity and a tighter packing. Subsequent binding of polyclonal immunoglobulin G anti-GM1 to the PSLBs was performed in situ and showed specificity. The anti-GM1 to GM1 ratios at equilibrium were roughly proportional to the concentrations of anti-GM1 administered in the solution. Fluorescence recovery after photobleaching was utilized to verify the retained, albeit reduced lateral fluidity of the supported membranes. Five moles percentage of GM1 membranes (GM1 to PC ratio approximately 1:19) decorated with 1 mol% N-(Texas Red sulfonyl)-1,2-dihexadecanoyl-sn-glycerol-3-phosphoethanolamine (Texas Red DHPE) exhibited an approximately 16% lower diffusion coefficient of 1.32+/-0.06 microm2/s, compared to 1.58+/-0.04 microm2/s for egg PC membranes without GM1 (p<0.01). The changes in vesicle properties and membrane lateral fluidity are attributed to the interactions of GM1 with itself and GM1 with other membrane lipids. This system allows for molecules of interest such as GM1 to exist on a more biologically relevant surface than those used in conventional methods such as ELISA. Our analysis of rabbit serum antibodies binding to GM1 demonstrates this platform can be used to test for the presence of anti-lipid antibodies in serum.  相似文献   

8.
The kinetics and the equilibria of Ni(II) binding to p-hydroxybenzohydroxamic acid (PHBHA) and salicylhydroxamic acid (SHA) have been investigated in an aqueous solution at 25 degrees C and I=0.2 M by the stopped-flow method. Two reaction paths involving metal binding to the neutral acid and to its anion have been observed. Concerning PHBHA, the rate constants of the forward and reverse steps are k1=(1.9+/-0.1)x10(3) M-1 s-1 and k-1=(1.1+/-0.1)x10(2) s-1 for the step involving the undissociated PHBHA and k2=(3.2+/-0.2)x10(4) M-1 s-1 and k-2=1.2+/-0.2 s-1 for the step involving the anion. Concerning SHA, the analogous rate constants are k1=(2.6+/-0.1)x10(3) M-1 s-1, k-1=(1.3+/-0.1)x10(3) s-1, k2=(5.4+/-0.2)x10(3) M-1 s-1, and k-2=6.3+/-0.5 s-1. These values indicate that metal binding to the anions of the two acids concurs with the Eigen-Wilkins mechanism and that the phenol oxygen is not involved in the chelation. Moreover, a slow effect was observed in the SHA-Ni(II) system, which has been put down to rotation of the benzene ring around the C-C bond. Quantum mechanical calculations at the B3LYP/lanL2DZ level reveal that the phenol group in the most stable form of the Ni(II) chelate is in trans position relative to the carbonyl oxygen, contrary to the free SHA structure, where the phenol and carbonyl oxygen atoms both have cis configuration. These results bear out the idea that the complex formation is coupled with phenol rotation around the C-C bond.  相似文献   

9.
The reaction of cobalt(III) acetate with excess manganese(II) acetate in acetic acid occurs in two stages, since the two forms Co(IIIc) and Co(IIIs) are not rapidly equilibrated and thus react independently. The rate constants at 24.5 degrees C are kc = 37.1 +/- 0.6 L mol-1 s-1 and ks = 6.8 +/- 0.2 L mol-1 s-1 at 24.5 degrees C in glacial acetic acid. The Mn(III) produced forms a dinuclear complex with the excess of Mn(II). This was studied independently and is characterized by the rate constant (3.43 +/- 0.01) x 10(2) L mol-1 s-1 at 24.5 degrees C. A similar interaction between Mn(III) and Co(II) is substantially slower, with k = (3.73 +/- 0.05) x 10(-1) L mol-1 s-1 at 24.5 degrees C. Mn(II) is also oxidized by Ce(IV), according to the rate law -d[Ce(IV)]/dt = k[Mn(II)]2[Ce(IV)], where k = (6.0 +/- 0.2) x 10(4) L2 mol-2 s-1. The reaction between Mn(II) and HBr2., believed to be involved in the mechanism by which Mn(III) oxidizes HBr, was studied by laser photolysis; the rate constant is (1.48 +/- 0.04) x 10(8) L mol-1 s-1 at approximately 23 degrees C in HOAc. Oxidation of Co(II) by HBr2. has the rate constant (3.0 +/- 0.1) x 10(7) L mol-1 s-1. The oxidation of HBr by Mn(III) is second order with respect to [HBr]; k = (4.10 +/- 0.08) x 10(5) L2 mol-2 s-1 at 4.5 degrees C in 10% aqueous HOAc. Similar reactions with alkali metal bromides were studied; their rate constants are 17-23 times smaller. This noncomplementary reaction is believed to follow that rate law so that HBr2. and not Br. (higher in Gibbs energy by 0.3 V) can serve as the intermediate. The analysis of the reaction steps then requires that the oxidation of HBr2. to Br2 by Mn(III) be diffusion controlled, which is consistent with the driving force and seemingly minor reorganization.  相似文献   

10.
A growing body of literature suggests that fluorocarbons can direct self-assembly within hydrocarbon environments. We report here the fabrication and characterization of supported lipid bilayers (SLBs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a synthetic, fluorocarbon-functionalized analogue, 1. AFM investigation of these model membranes reveals an intricate, composition-dependent domain structure consisting of approximately 50 nm stripes interspersed between approximately 1 microm sized domains. Although DSC of 1 showed a phase transition near room temperature, DSC of DPPC:1 mixtures exhibited complex phase behavior suggesting domain segregation. Finally, temperature-dependent AFM of DPPC:1 bilayers shows that, while the stripe structures can be melted above the Tm of 1, the stripes and domains result from immiscibility of the hydrocarbon and fluorocarbon lipid gel phases. Fluorination appears to be a promising strategy for chemical self-assembly in two dimensions. In particular, because no modification is made to the lipid headgroups, it may be useful for nanopatterning biologically relevant ligands on bilayers in vitro or in living cells.  相似文献   

11.
The magnetic field effect on the recombination kinetics of the triplet radical ion pair state (RIPS) of the Zn-porphyrin-viologen dyad (P-Ph-Vi2+) in the small unilamellar vesicles (SUV) of D,L-dipalmitoyl-alpha-phosphatidylcholine has been studied by the nanosecond laser flash photolysis technique at 5-60 degrees C. The increase in temperature from 25 to 40 degrees C enhances the rate constant (kr) of the RIPS recombination in zero magnetic field from 0.9 x 10(6) to 1.6 x 10(6) s-1, while kr is temperature insensitive at 5-25 and 40-60 degrees C. The typical break in the kr temperature dependence is observed in the temperature range of the phase transition of the SUV bilayers from the solid to the fluid state. The kr value in a strong magnetic field (B = 0.24 T) is equal to 2.7 x 10(5) s-1 and it is independent of temperature at 5-60 degrees C. The shape of the magnetic field dependence of kr is unaffected by the phase transition of the SUV bilayers and is characterized by the existence of an initial plateau of kr at B = 0 to 0.5 mT.  相似文献   

12.
The kinetics of the oxidation of trans-[RuIV(tmc)(O)(solv)]2+ to trans-[RuVI(tmc)(O)2]2+ (tmc is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic tertiary amine ligand; solv = H2O or CH3CN) by MnO4- have been studied in aqueous solutions and in acetonitrile. In aqueous solutions the rate law is -d[MnO4]/dt = kH2O[RuIV][MnO4-] = (kx + (ky)/(Ka)[H+])[RuIV][MnO4-], kx = (1.49 +/- 0.09) x 101 M-1 s-1 and ky = (5.72 +/- 0.29) x 104 M-1 s-1 at 298.0 K and I = 0.1 M. The terms kx and ky are proposed to be the rate constants for the oxidation of RuIV by MnO4- and HMnO4, respectively, and Ka is the acid dissociation constant of HMnO4. At [H+] = I = 0.1 M, DeltaH and DeltaS are (9.6 +/- 0.6) kcal mol-1 and -(18 +/- 2) cal mol-1 K-1, respectively. The reaction is much slower in D2O, and the deuterium isotope effects are kx/kxD = 3.5 +/- 0.1 and ky/kyD = 5.0 +/- 0.3. The reaction is also noticeably slower in H218O, and the oxygen isotope effect is kH216O/kH218O = 1.30 +/- 0.07. 18O-labeled studies indicate that the oxygen atom gained by RuIV comes from water and not from KMnO4. These results are consistent with a mechanism that involves initial rate-limiting hydrogen-atom abstraction by MnO4- from coordinated water on RuIV. In acetonitrile the rate law is -d[MnO4-]/dt = kCH3CN[RuIV][MnO4-], kCH3CN = 1.95 +/- 0.08 M-1 s-1 at 298.0 K and I = 0.1 M. DeltaH and DeltaS are (12.0 +/- 0.3) kcal mol-1 and -(17 +/- 1) cal mol-1 K-1, respectively. 18O-labeled studies show that in this case the oxygen atom gained by RuIV comes from MnO4-, consistent with an oxygen-atom transfer mechanism.  相似文献   

13.
The ability of neutral polymer cushions to support neutral lipid bilayers for the incorporation of mobile transmembrane proteins was investigated. Polyacrylamide brush layers were grown on fused silica using atom-transfer radical polymerization to provide polymer layers of 2.5-, 5- and 10-nm thickness. Lipid bilayers composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) were formed by vesicle fusion onto bare fused silica and onto each of the polyacrylamide layers. Bilayer fluidity was assessed by the diffusion of a probe, NBD-labeled phosphatidylcholine, using fluorescence recovery after photobleaching. A transmembrane protein, the human delta-opioid receptor, was inserted into each lipid bilayer, and its ability to bind a synthetic ligand, DPDPE, cyclic[2-d-penicillamine, 5-d-penicillamine]enkephalin, was detected using single-molecule fluorescence spectroscopy by labeling this ligand with a rhodamine dye. The transmembrane protein was observed to bind the ligand for all bilayers tested. The protein's electrophoretic mobility was probed by monitoring the fluorescence from the bound ligand. The 5-nm polyacrylamide thickness gave the fastest diffusion for the fluorescent lipid probe (D(1) = 2.0(+/-1.2) x 10(-7) and D(2) = 1.2(+/-0.5) x 10(-6) cm(2)/s) and also the largest electrophoretic mobility for the transmembrane protein (3 x 10(-8) cm(2)/V.s). The optimum in polymer thickness is suggested to be a tradeoff between decoupling from the substrate and increasing roughness of the polymer surface.  相似文献   

14.
Membranes prepared by the adsorption of phospholipid vesicles on solid supports are much-used model systems in biomedical research. However, there is accumulating evidence that such membranes may not always be equivalent to the free-standing cellular membranes that they are modeling. In the present study, sonicated DOPC/DOPS (80/20 mol %) vesicles were adsorbed on hydrophilic silica surfaces, a system that has been demonstrated to produce confluent bilayers. In addition, pure DOPC and DLPC membranes were studied. It is demonstrated that ethanol-induced membrane interdigitation, as demonstrated for free-standing bilayers, does not occur in these supported membranes.  相似文献   

15.
We report rate coefficients for the relaxation of OH(v=1) and OD(v=1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10(-12) cm3 molecule-1 s-1) can be expressed as: for OH(v=1)+H2O between 263 and 390 K: k=(2.4+/-0.9) exp((460+/-115)/T); for OH(v=1)+D2O between 256 and 371 K: k=(0.49+/-0.16) exp((610+/-90)/T); for OD(v=1)+H2O between 251 and 371 K: k=(0.92+/-0.16) exp((485+/-48)/T); for OD(v=1)+D2O between 253 and 366 K: k=(2.57+/-0.09) exp((342+/-10)/T). Rate coefficients at (297+/-1 K) are also reported for the relaxation of OH(v=2) by D2O and the relaxation of OD(v=2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O-HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O-HO, D2O-HO, H2O-DO and D2O-DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates-assuming that relaxation proceeds via the hydrogen-bonded complexes.  相似文献   

16.
Complexes Cu(O2Ncat)(tbeda) (1) and Cu(O2Ncat)(tmeda) (2) (tbeda = N,N,N',N'-tetrabenzylethylenediamine, tmeda=N,N,N',N'-tetramethylethylenenediamine, O2NcatH2=4-nitrocatechol) have been prepared by the reaction of copper(II) perchlorate with 4-nitrocatechol in the presence of triethylamine and the appropriate bidentate ligand. These compounds represent structural and functional model systems for the copper-containing catechol 1,2-dioxygenase. Both complexes have been structurally characterized by X-ray crystallography and by UV-vis, IR, and EPR spectroscopies. Upon protonation of 1 and 2 with perchloric acid, the bidentate coordination of O2Ncat could be reversible converted to the monodentate coordination of O2NcatH. The equilibrium constants were found to be 4200 and 3500, respectively, by measuring the UV-vis spectra in DMF. Back-titration with morpholine proved the reversibility of both reactions. Kinetic data on the oxygenation of 1 and 2 revealed overall second-order rate equations with kinetic parameters: ktbeda=(4.63+/-0.23)x10(-2) mol-1 dm3 s-1, DeltaH=51+/-6 kJ mol-1, DeltaS=-137+/-16 J mol-1 K-1; ktmeda=(0.89+/-0.23) mol-1 dm3 s-1, DeltaH=85+/-7 kJ mol-1, DeltaS=-57+/-19 J mol-1 K-1 at 365.16 K. Oxygenation of 1, 2, and [Cu(O2NcatH)(L)]ClO4 (L=tbeda, tmeda) in DMF solution at ambient conditions gives the corresponding intradiol ring-cleaved (2-nitro-muconato)copper(II) complexes. These data support the assumption that the reaction of the differently coordinated catecholate ligand with dioxygen shows only 1,2-dioxygenase activity.  相似文献   

17.
This paper reports an experimental investigation of the self-assembly of phospholipids (l-alpha-phosphatidylcholine-beta-oleoyl-gamma-palmitoyl (l-POPC), dipalmitoyl phosphatidylcholine (DPPC), and l-alpha-dilauroyl phosphatidylcholine (l-DLPC)) at interfaces between aqueous phases and the nematic liquid crystal (LC) 4'-pentyl-4-cyanobiphenyl. Stable planar interfaces between the aqueous phases and LCs were created by hosting the LCs within gold grids (square pores with widths of 283 microm and depths of 20 microm). At these interfaces, the presence and lateral organization of the phospholipids leads to interface-driven orientational transitions within the LC. By doping the phospholipids with a fluorescently labeled lipid (Texas Red-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (TR-DPPE)), quantitative epifluorescence microscopy revealed the saturation coverage of phospholipid at the interface to be that of a monolayer with an areal density of approximately 49 +/- 8% relative to hydrated lipid bilayers. By adsorbing phospholipids to the aqueous-LC interface from either vesicles or mixed micelles of dodecyltrimethylammonium and phospholipid, control of the areal density of phospholipid from 42 +/- 10 to 102 +/-18% of saturation monolayer coverage was demonstrated. Fluorescence recovery after photobleaching (FRAP) experiments performed by using laser scanning confocal microscopy (LSCM) revealed the lateral mobility of fluorescently labeled DPPE in l-DLPC assembled at the interface with the liquid crystal to be (6 +/- 1) x 10(-12) m(2)/s for densely packed monolayers. Variation of the surface coverage and composition of phospholipid led to changes in lateral diffusivity between (0.2 +/- 0.1) x 10(-12) and (15 +/- 2) x 10(-12) m(2)/s. We also observed the phospholipid-laden interface to be compartmentalized by the gold grid, thus allowing for the creation of patterned arrays of phospholipids at the LC-aqueous interface.  相似文献   

18.
Rate coefficients (ktot,Ni) are reported (a) for total removal (reactive+inelastic) of CN(X2Sigma+,v=2,Ni) radicals from selected rotational levels (Ni=0, 1, 6, 10, 15, and 20) and (b) for state-to-state rotational energy transfer (ki-->f) between levels Ni and other rotational levels Nf in collisions with C2H2. CN radicals were generated by pulsed laser photolysis of NCNO at 573 nm. A fraction of the radicals was then promoted to a selected rotational level in v=2 using a tunable infrared "pump" laser operating at approximately 2.45 microm, and the subsequent fate of this subset of radicals was monitored using pulsed laser-induced fluorescence (PLIF). Values of ktot,Ni were determined by observing the decay of the PLIF signals as the delay between pump and probe laser pulses was systematically varied. In a second series of experiments, double resonance spectra were recorded at a short delay between the pump and probe laser pulses. Analysis of these spectra yielded state-to-state rate coefficients for rotational energy transfer, ki-->f. The difference between the sum of these rate coefficients, Sigmafki-->f, and the value of ktot,Ni for the same level Ni is attributed to the occurrence of chemical reaction, yielding values of the rotationally selected rate coefficients (kreac,Ni) for reaction of CN from specified rotational levels. These rate coefficients decrease from (7.9+/-2.2)x10(-10) cm3molecule-1 s-1 for Ni=0 to (0.8+/-1.3)x10(-10) cm3 molecule-1 s-1 for Ni=20. The results are briefly discussed in the context of microcanonical transition state theory and the statistical adiabatic channel model.  相似文献   

19.
Supported lipid bilayers (SLBs) have been widely used as model systems to study cell membrane processes because they preserve the same 2D membrane fluidity found in living cells. One of the most significant limitations of this platform, however, is its inability to incorporate mobile transmembrane species. It is often postulated that transmembrane proteins reconstituted in SLBs lose their mobility because of direct interactions between the protein and the underlying substrate. Herein, we demonstrate a highly mobile fraction for a transmembrane protein, annexin V. Our strategy involves supporting the lipid bilayer on a double cushion, where we not only create a large space to accommodate the transmembrane portion of the macromolecule but also passivate the underlying substrate to reduce nonspecific protein-substrate interactions. The thickness of the confined water layer can be tuned by fusing vesicles containing polyethyleneglycol (PEG)-conjugated lipids of various molecular weights to a glass substrate that has first been passivated with a sacrificial layer of bovine serum albumin (BSA). The 2D fluidity of these systems was characterized by fluorescence recovery after photobleaching (FRAP) measurements. Uniform, mobile phospholipid bilayers with lipid diffusion coefficients of around 3 x 10(-8) cm2/s and percent mobile fractions of over 95% were obtained. Moreover, we obtained annexin V diffusion coefficients that were also around 3 x 10(-8) cm2/s with mobile fractions of up to 75%. This represents a significant improvement over bilayer platforms fabricated directly on glass or using single cushion strategies.  相似文献   

20.
13C NMR was used to study the rate of DMF exchange in the nickel(II) cation Ni(DMF)6(2+) and in the monochloro species Ni(DMF)5Cl+ with 13C-labeled DMF in the temperature range of 193-395 K in DMF (DMF = N,N-dimethylformamide). The kinetic parameters for solvent exchange are kex = (3.7 +/- 0.4) x 10(3) s-1, delta H++ = 59.3 +/- 5 kJ mol-1, and delta S++ = +22.3 +/- 14 J mol-1 K-1 for Ni(DMF)6(2+) and kex = (5.3 +/- 1) x 10(5) s-1, delta H++ = 42.4 +/- 4 kJ mol-1, and delta S++ = +6.7 +/- 15 J mol-1 K-1 for Ni(DMF)5Cl+. Multiwavelength stopped-flow spectrophotometry was used to study the kinetics of complex formation of the cation Ni(DMF)6(2+) and of the 100-fold more labile cation Ni(DMF)5Cl+ with TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and TEC (1,4,8,11-tetraethyl-1,4,8,11-tetraazacyclotetradecane) in DMF at 298 K and I = 0.6 M (tetra-n-butylammoniumperchlorate). Equilibrium constants K for the addition of the nucleophiles DMF, Cl-, and Br- to the complexes Ni(TMC)2+ and Ni(TEC)2+ were determined by spectrophotometric titration. Formation of the complexes Ni(TMC)2+ and Ni(TEC)2+ was found to occur in two stages. In the initial stage, fast, second-order nickel incorporation with rate constants k1(TMC) = 99 +/- 5 M-1 s-1 and k1 (TEC) = 235 +/- 12 M-1 s-1 leads to the intermediates Ni(TMC)int2+ and Ni(TEC)int2+, which have N4-coordinated nickel. In the second stage, these intermediates rearrange slowly to form the stereochemically most stable configuration. First-order rate constants for the one-step rearrangement of Ni(TMC)int2+ and the two-step rearrangment of Ni(TEC)int2+ are presented. Because of the rapid formation of Ni(DMF)5Cl+, the reactions of Ni(DMF)6(2+) with TMC and TEC are accelerated upon the addition of tetra-n-butylammoniumchloride (TBACl) and lead to the complexes Ni(TMC)Cl+ and Ni(TEC)Cl+, respectively. For initial concentrations such that [TBACl]o/[nickel]o > or = 20, intermediate formation is 230 times (TMC) and 47 times (TEC) faster than in the absence of chloride. The mechanism of complex formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号