首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

2.
Single-walled carbon nanotubes exhibit strong antimicrobial activity   总被引:2,自引:0,他引:2  
We provide the first direct evidence that highly purified single-walled carbon nanotubes (SWNTs) exhibit strong antimicrobial activity. By using a pristine SWNT with a narrow diameter distribution, we demonstrate that cell membrane damage resulting from direct contact with SWNT aggregates is the likely mechanism leading to bacterial cell death. This finding may be useful in the application of SWNTs as building blocks for antimicrobial materials.  相似文献   

3.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) are typically long (greater than or approximately equal 100 nm) and have been well established as novel quasi one-dimensional systems with interesting electrical, mechanical, and optical properties. Here, quasi zero-dimensional SWNTs with finite lengths down to the molecular scale (7.5 nm in average) were obtained by length separation using a density gradient ultracentrifugation method. Different sedimentation rates of nanotubes with different lengths in a density gradient were taken advantage of to sort SWNTs according to length. Optical experiments on the SWNT fractions revealed that the UV-vis-NIR absorption and photoluminescence peaks of the ultrashort SWNTs blue-shift up to approximately 30 meV compared to long nanotubes, owing to quantum confinement effects along the length of ultrashort SWNTs. These nanotube capsules essentially correspond to SWNT quantum dots.  相似文献   

5.
Single walled carbon nanotubes (SWNTs) continue to demonstrate the potential of nanoscaled materials in a wide range of applications. The ability to modulate the mechanical or electrical properties of a material by varying the SWNT component may result in diverse "application tunable" materials. Similarly, biomaterials used in tissue engineering applications may benefit from these characteristics by varying electrical and mechanical properties to enhance or direct tissue specific regeneration. The interactions between SWNTs and cellular systems need to be optimized to integrate these highly hydrophobic nanoparticles within an aqueous environment while maintaining their unique properties. We assessed solubility, conductance, and cellular interactions between four different SWNT preparations (unrefined, refined, and SWNT with either albumin or human plasma adsorbed). Initial interactions between cells and SWNTs were assessed within a 3D environment using a red blood cell lysis model, with longer-term interactions assessing the effects on PC12 and 3T3 fibroblast function when cultured on SWNT-collagen composite hydrogels. After SWNT purification, the lytic effect on red blood cells (RBCs) is significantly reduced from 11% to 0.7%, indicating manufacturing contaminants play a significant role in undesirable cell interactions. Nanotubes with either human plasma or albumin physisorbed onto the nanotube surface were significantly more hydrophilic than either unrefined or refined preparations and displayed improved RBC interactions. Despite improved dispersion, purification, and adsorption of either plasma or albumin, SWNTs caused a significant reduction in conductance. Although the molecular interactions occurring at the cell membrane remain unclear, these investigations have identified two main factors contributing to membrane failure: manufacturing impurities and to a lesser extend the material's innate hydrophobicity. Although purification is a critical step to remove toxic manufacturing contaminants, care must be taken to ensure improved aqueous dispersion does not compromise desirable mechanical and electrical attributes.  相似文献   

6.
For preparation of polystyrene (PS) composites, a polymeric dispersant, pyrene-capped polystyrene (PyPS), was applied for noncovalent functionalization of single-walled carbon nanotubes (SWNTs) to improve both dispersion quality and PS–SWNT interfacial interactions. To demonstrate the critical role of PyPS, the composites with the absence of PyPS (PS/SWNT) were also prepared for comparison. Rheological studies suggest that addition of SWNTs, particularly of PyPS-functionalized SWNTs, suppresses significantly large-scale relaxation of PS chains but has little effect on their short-range dynamics. Relative to PS, moderately improved thermal and mechanical properties took place on the composites with either pristine or PyPS-functionalized SWNTs. The PS/PyPS/SWNT composite usually presents better performance than the PS/SWNT one at a fixed SWNT content.  相似文献   

7.
The radiation degradation of a nanotube-polyimide nanocomposite was studied. Radiation chemistry was observed that was not present in the unmodified polymer or in the imbedded single-walled carbon nanotubes (SWNTs) themselves. The tensile properties were found to be improved by the addition of SWNTs in the unirradiated materials, and no deterioration in these properties with irradiation was observed. The SWNTs were found to have a detrimental effect on the optical properties however. The transparency of the composite was degraded significantly faster by electron-beam radiation than the neat polymer was. This may make the SWNT/polyimide composites unsuitable for some space applications. Electron Spin Resonance (ESR) measurements determined that the SWNTs interfere with the radical chemistry in the irradiated materials. This could be due to energy dissipation by the SWNT network, preventing the formation of radical species, or alternatively, preferential reaction or termination of radicals by the nanotubes. FT-Raman spectroscopy was found to be a very useful tool for examining SWNTs embedded at low concentrations. It revealed no signs of SWNT degradation up to 10 MGy.  相似文献   

8.
We show that single walled carbon nanotubes (SWNTs) with different isotope compositions exhibit distinct Raman G-band peaks and can be used for multiplexed multicolor Raman imaging of biological systems. Cancer cells with specific receptors are selectively labeled with three differently "colored" SWNTs conjugated with various targeting ligands including Herceptin (anti-Her2), Erbitux (anti-Her1), and RGD peptide, allowing for multicolor Raman imaging of cells in a multiplexed manner. SWNT Raman signals are highly robust against photobleaching, allowing long-term imaging and tracking. With narrow peak features, SWNT Raman signals are easily differentiated from the autofluorescence background. The SWNT Raman excitation and scattering photons are in the near-infrared region, which is the most transparent optical window for biological systems in vitro and in vivo. Thus, SWNTs are novel Raman tags promising for multiplexed biological detection and imaging.  相似文献   

9.
Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.  相似文献   

10.
Single-walled carbon nanotubes (SWNTs) are promising materials for in vitro and in vivo biological applications due to their high surface area and inherent near infrared photoluminescence and Raman scattering properties. Here, we use density gradient centrifugation to separate SWNTs by length and degree of bundling. Following separation, we observe a peak in photoluminescence quantum yield (PL QY) and Raman scattering intensity where SWNT length is maximized and bundling is minimized. Individualized SWNTs are found to exhibit high PL QY and high resonance-enhanced Raman scattering intensity. Fractions containing long, individual SWNTs exhibit the highest PL QY and Raman scattering intensities, compared to fractions containing single, short SWNTs or SWNT bundles. Intensity gains of approximately ~1.7 and 4-fold, respectively, are obtained compared with the starting material. Spectroscopic analysis reveals that SWNT fractions at higher displacement contain increasing proportions of SWNT bundles, which causes reduced optical transition energies and broadening of absorption features in the UV-Vis-NIR spectra, and reduced PL QY and Raman scattering intensity. Finally, we adsorb small aromatic species on "bright," individualized SWNT sidewalls and compare the resulting absorption, PL and Raman scattering effects to that of SWNT bundles. We observe similar effects in both cases, suggesting aromatic stacking affects the optical properties of SWNTs in an analogous way to SWNT bundles, likely due to electronic structure perturbations, charge transfer, and dielectric screening effects, resulting in reduction of the excitonic optical transition energies and exciton lifetimes.  相似文献   

11.
The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.  相似文献   

12.
A coagulation method providing a better dispersion of single-walled carbon nanotubes (SWNTs) in a polymer matrix was used to produce SWNT/poly(methyl methacrylate) (PMMA) composites. Optical microscopy and scanning electron microscopy showed an improved dispersion of SWNTs in the PMMA matrix, a key factor in composite performance. Aligned and unaligned composites were made with purified SWNTs with different SWNT loadings (0.1–7 wt %). Comprehensive testing showed improved elastic modulus, electrical conductivity, and thermal stability with the addition of SWNTs. The electrical conductivity of a 2 wt % SWNT composite decreased significantly (>105) when the SWNTs were aligned, and this result was examined in terms of percolation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3333–3338, 2003  相似文献   

13.
Inversed micelles formed by polystyrene-block-poly(2-vinyl-pyridine) in toluene loaded with FeCl3 were used to synthesize and deliver discrete Fe2O3 nanoclusters with uniform diameters to flat substrates. Single-walled carbon nanotubes (SWNTs) were grown by chemical vapor deposition using these nanoclusters as the catalysts. Atomic force microscope characterizations revealed that high density SWNT mats were grown on the surface and the diameter of nanotubes was controlled by the diameter of nanoclusters. Electrical measurement revealed that the dense SWNT mats contained both semiconducting and metallic SWNTs and could be used to build thin film transistors.  相似文献   

14.
Microwave-assisted functionalization of single-wall carbon nanotubes (SWNTs) in a mixture of nitric and sulfuric acids was carried out to synthesize highly water-dispersible nanotubes. Stable concentrations as high as 10 mg/mL were obtained in deionized water that are nearly 2 orders of magnitude higher than those previously reported. This was after only 3 min of functionalization reaction. Fourier transform infrared spectra showed the presence of carboxylated (-COOH) and acid sulfonated (-SO(2).OH or -SO(3)(-) H(+)) groups on the SWNTs. On the basis of elemental analysis, it was estimated that one out of three carbon atoms was carboxylated, while one out of 10 carbon atoms was sulfonated. The Raman spectra taken both in aqueous dispersion and in the solid phase indicated charge transfer from the SWNT backbone to the functional groups. Scanning electron microscope images of thin films deposited from an aqueous suspension showed that the SWNTs were aligned parallel to one another on the substrate. The images also indicated some reduction in average length of the nanotubes. Transmission electron microscope images of thin films from a dilute methanol dispersion showed that the SWNTs were extensively debundled. Laser light scattering particle size measurements did not show evidence for the existence of particles in the 3-800 nm size range, indicating that the functionalized SWNTs might have dispersed to have formed a true solution. Moreover, the microwave-processed SWNTs were found to contain significantly smaller amounts of the original iron catalyst relative to that present in the starting nanotubes. The electrical conductivity of a thermally annealed thin membrane obtained from the microwave-functionalized SWNTs was found to be the same as that of a similar membrane obtained from a suspension of the starting nanotubes.  相似文献   

15.
DC conductivity of conjugated polymer‐single‐walled carbon nanotube (SWNT) composite films has been measured for different SWNT concentrations. The composite was prepared by dispersing SWNTs in the poly (3‐octylthiophene), P3OT matrix already dissolved in xylene. The conductivity of the composite films showed a rapid increase as the SWNT concentration increases beyond a certain value. This behavior is explained in terms of percolating paths provided by the SWNTs in the volume of polymer matrix. To investigate the effect of length of nanotubes on the percolation conductivity, different SWNT samples were employed with similar diameter but varying tube lengths. It was found that the conductivity of the composite films is strongly dominated by the length of the nanotubes. Lower percolation limit and high conductivity value of composite films is observed for longer nanotubes. Furthermore, the conductivity is observed to be dependent on the size of the host polymer molecule also. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 89–95, 2010  相似文献   

16.
The interaction between single‐walled carbon nanotubes (SWNTs) and graphene were studied with first‐principles calculations. Both SWNTs and single‐layer graphene (SLG) or double‐layer graphene (DLG) display more remarkable deformations with the increase of SWNT diameter, which implies a stronger interaction between SWNTs and graphene. Besides, in DLG, deformation of the upper‐layer graphene is less than in SLG. Zigzag SWNTs show stronger interactions with SLG than armchair SWNTs, whereas the order is reversed for DLG, which can be interpreted by the mechanical properties of SWNTs and graphene. Density of states and band structures were also studied, and it was found that the interaction between a SWNT and graphene is not strong enough to bring about obvious influence on the electronic structures of SWNTs. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
In this Communication, we have demonstrated a facile and effective approach to identify the structure of the superlong well-aligned single-walled carbon nanotubes (SWNTs) by the combination of electrodeposition of metal (Ag) with Raman spectroscopy. The suitable density and the visibility of the Ag-deposited long oriented nanotubes make it possible to acquire Raman spectra from isolated individual nanotubes very easily. The results reveal that the well-oriented SWNT arrays on SiO2/Si wafer fabricated by EtOH chemical vapor deposition using Fe/Mo nanoparticles as catalyst exhibit a low percentage of metallic SWNTs (5%). Among other SWNTs about 62.3% are semiconducting SWNTs, and a small amount of nanotubes are quasimetallic. About 32% are a so-called quasi-insulator, which is caused inevitably by the defects during growth. Furthermore, the structural uniformity of the long SWNTs can be also evaluated by the deposition of Ag along the length and Raman spectroscopy. This method also provides an approach to deposit other metals on long SWNTs, which could have various potential applications such as for use as sensors, etc. More importantly, this facile method can be applied to long SWNT arrays fabricated from other different catalytic systems so that the relationship between the growth conditions and the structures of SWNTs are expected to be ruled out.  相似文献   

18.
采用巨正则系统MonteCarlo方法研究了甲烷在单壁碳纳米管(Singlewallcarbonnanotube,SWNT)中于低温74.05K下的吸附等温线及吸附机理,发现在两个较小的孔径(1.225nm和1.632nm)下单壁碳纳米管中甲烷的吸附有着明显的微孔所独有的“填充效应”,而在2.04nm以上的孔的吸附中会出现毛细凝聚现象。通过模拟知道发生毛细凝聚的必要条件是孔内能至少容纳下两层粒子,此外还导出在恒定温度下毛细凝聚吸附量与SWNT孔径关系。本文还模拟了常温300K下甲烷在SWNT内的吸附,对比了2.04nm和4.077nm两种孔径的SWNT吸附甲烷的等温线,推荐在4.077nm孔中的适宜吸附存储压力为5.0~6.0MPa,吸附质量分数可达16%~19%.  相似文献   

19.
采用粘性胶状物作为生长单壁碳纳米管(SWNTs)的催化剂前驱体, 在原子力显微镜下驱动废旧的硅探针粘附该种胶状物,随后进行化学气相沉积(CVD), 实现了SWNTs在硅探针末端的定位生长, 成功地制备出了SWNT针尖. 对SWNTs及SWNT 针尖进行了表征, 并对针尖的稳定成像条件进行了分析. 结果表明, 针尖一般由5-10 nm 的SWNT 管束构成, 伸出长度仅为几百纳米, 受热振动影响较小, 无需后处理即可稳定地成像, 成像分辨率与新的硅探针相当.  相似文献   

20.
A strategy to prepare horizontally aligned single-walled carbon nanotubes(SWNTs) at moderate temperatures(≤600 ℃) were developed.Using ferocene as the catalyst precursor,Fe nanoparticles are formed in the gaseous phase and catalyze the nucleation and growth of SWNTs in situ.Then the resultant SWNTs are deposited onto the substrates downstream and aligned by the surface lattice of the ST-cut single crystal quartz.The preparation of SWNT arrays at moderate temperatures is important for combining the tube growth with device fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号