首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a generalized variable-metric algorithm is presented. It is shown that this algorithm attains the minimum of a positive-definite, quadratic function in a finite number of steps and that thevariable-metric matrix tends to the inverse of the Hessian matrix. Most known variable-metric algorithms can be derived from this generalized algorithm, and some new algorithms are also obtained.The author expresses his gratitude to Professor H. Tokumaru for guidance and encouragement.  相似文献   

2.
Generalized delaunay triangulation for planar graphs   总被引:7,自引:0,他引:7  
We introduce the notion of generalized Delaunay triangulation of a planar straight-line graphG=(V, E) in the Euclidean plane and present some characterizations of the triangulation. It is shown that the generalized Delaunay triangulation has the property that the minimum angle of the triangles in the triangulation is maximum among all possible triangulations of the graph. A general algorithm that runs inO(|V|2) time for computing the generalized Delaunay triangulation is presented. When the underlying graph is a simple polygon, a divide-and-conquer algorithm based on the polygon cutting theorem of Chazelle is given that runs inO(|V| log |V|) time.Supported in part by the National Science Foundation under Grants DCR 8420814 and ECS 8340031.  相似文献   

3.
 We present combinatorial interior point methods for the generalized minimum cost flow and the generalized circulation problems based on Wallacher and Zimmermann's combinatorial interior point method for the minimum cost network flow problem. The algorithms have features of both a combinatorial algorithm and an interior point method. They work towards optimality by iteratively reducing the value of a potential function while maintaining interior point solutions. At each iteration, flow is augmented along a generalized circulation, which is computed by solving a TVPI (Two Variables Per Inequality) system. The algorithms run in time, where m and n are, respectively, the number of arcs and nodes in the graph, and L is the length of the input data. Received: June 1, 2001 / Accepted: May 23, 2002-08-22 Published online: September 27, 2002 RID="*" ID="*" This research was supported in part by NSF Grants DMS 94-14438, DMS 95-27124, CDA 97-26385 and DMS 01-04282, and DOE Grant DE-FG02-92ER25126 Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

4.
This paper proposes a new generalized homotopy algorithm for the solution of multiobjective optimization problems with equality constraints. We consider the set of Pareto candidates as a differentiable manifold and construct a local chart which is fitted to the local geometry of this Pareto manifold. New Pareto candidates are generated by evaluating the local chart numerically. The method is capable of solving multiobjective optimization problems with an arbitrary number k of objectives, makes it possible to generate all types of Pareto optimal solutions, and is able to produce a homogeneous discretization of the Pareto set. The paper gives a necessary and sufficient condition for the set of Pareto candidates to form a (k-1)-dimensional differentiable manifold, provides the numerical details of the proposed algorithm, and applies the method to two multiobjective sample problems.  相似文献   

5.
In this paper, we present a new formulation for constructing an n-dimensional ellipsoid by generalizing the computation of the minimum volume covering ellipsoid. The proposed ellipsoid construction is associated with a user-defined parameter β∈[0,1), and formulated as a convex optimization based on the CVaR minimization technique proposed by Rockafellar and Uryasev (J. Bank. Finance 26: 1443–1471, 2002). An interior point algorithm for the solution is developed by modifying the DRN algorithm of Sun and Freund (Oper. Res. 52(5):690–706, 2004) for the minimum volume covering ellipsoid. By exploiting the solution structure, the associated parametric computation can be performed in an efficient manner. Also, the maximization of the normal likelihood function can be characterized in the context of the proposed ellipsoid construction, and the likelihood maximization can be generalized with parameter β. Motivated by this fact, the new ellipsoid construction is examined through a multiclass discrimination problem. Numerical results are given, showing the nice computational efficiency of the interior point algorithm and the capability of the proposed generalization.  相似文献   

6.
An n×n real matrix P is said to be a symmetric orthogonal matrix if P = P?1 = PT. An n × n real matrix Y is called a generalized centro‐symmetric with respect to P, if Y = PYP. It is obvious that every matrix is also a generalized centro‐symmetric matrix with respect to I. In this work by extending the conjugate gradient approach, two iterative methods are proposed for solving the linear matrix equation and the minimum Frobenius norm residual problem over the generalized centro‐symmetric Y, respectively. By the first (second) algorithm for any initial generalized centro‐symmetric matrix, a generalized centro‐symmetric solution (least squares generalized centro‐symmetric solution) can be obtained within a finite number of iterations in the absence of round‐off errors, and the least Frobenius norm generalized centro‐symmetric solution (the minimal Frobenius norm least squares generalized centro‐symmetric solution) can be derived by choosing a special kind of initial generalized centro‐symmetric matrices. We also obtain the optimal approximation generalized centro‐symmetric solution to a given generalized centro‐symmetric matrix Y0 in the solution set of the matrix equation (minimum Frobenius norm residual problem). Finally, some numerical examples are presented to support the theoretical results of this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We show that the minimum r-weight dr of an anticode can be expressed in terms of the maximum r-weight of the corresponding code. As examples, we consider anticodes from homogeneous hypersurfaces (quadrics and Hermitian varieties). In a number of cases, all differences (except for one) of the weight hierarchy of such an anticode meet an analog of the generalized Griesmer bound.  相似文献   

8.
The aim of this paper is to study generalized complex geometry (Hitchin, 2002) [6] and Dirac geometry (Courant, 1990) [3], (Courant and Weinstein, 1988) [4] on homogeneous spaces. We offer a characterization of equivariant Dirac structures on homogeneous spaces, which is then used to construct new examples of generalized complex structures. We consider Riemannian symmetric spaces, quotients of compact groups by closed connected subgroups of maximal rank, and nilpotent orbits in sln(R). For each of these cases, we completely classify equivariant Dirac structures. Additionally, we consider equivariant Dirac structures on semisimple orbits in a semisimple Lie algebra. Here equivariant Dirac structures can be described in terms of root systems or by certain data involving parabolic subalgebras.  相似文献   

9.
Plane wave approximation of homogeneous Helmholtz solutions   总被引:1,自引:0,他引:1  
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.  相似文献   

10.
Iterative methods based on Lanczos bidiagonalization with full reorthogonalization (LBDR) are considered for solving large-scale discrete ill-posed linear least-squares problems of the form min x Ax–b2. Methods for regularization in the Krylov subspaces are discussed which use generalized cross validation (GCV) for determining the regularization parameter. These methods have the advantage that no a priori information about the noise level is required. To improve convergence of the Lanczos process we apply a variant of the implicitly restarted Lanczos algorithm by Sorensen using zero shifts. Although this restarted method simply corresponds to using LBDR with a starting vector (AA T) p b, it is shown that carrying out the process implicitly is essential for numerical stability. An LBDR algorithm is presented which incorporates implicit restarts to ensure that the global minimum of the CGV curve corresponds to a minimum on the curve for the truncated SVD solution. Numerical results are given comparing the performance of this algorithm with non-restarted LBDR.This work was partially supported by DARPA under grant 60NANB2D1272 and by the National Science Foundation under grant CCR-9209349.  相似文献   

11.
An iterative method is proposed to solve generalized coupled Sylvester matrix equations, based on a matrix form of the least-squares QR-factorization (LSQR) algorithm. By this iterative method on the selection of special initial matrices, we can obtain the minimum Frobenius norm solutions or the minimum Frobenius norm least-squares solutions over some constrained matrices, such as symmetric, generalized bisymmetric and (RS)-symmetric matrices. Meanwhile, the optimal approximate solutions to the given matrices can be derived by solving the corresponding new generalized coupled Sylvester matrix equations. Finally, numerical examples are given to illustrate the effectiveness of the present method.  相似文献   

12.
The prize-collecting generalized minimum spanning tree problem (PC-GMSTP), is a generalization of the generalized minimum spanning tree problem (GMSTP) and belongs to the hard core of -hard problems. We describe an exact exponential time algorithm for the problem, as well we present several mixed integer and integer programming formulations of the PC-GMSTP. Moreover, we establish relationships between the polytopes corresponding to their linear relaxations and present an efficient solution procedure that finds the optimal solution of the PC-GMSTP for graphs with up 240 nodes.  相似文献   

13.
In this paper, we will extend the results about the parametric maximum flow problem to networks in which the parametrization of the arc capacities can involve both the source and the sink, as in Gallo, Grigoriadis, and Tarjan (1989), and also an additional node. We will show that the minimum cuts of the investigated networks satisfy a relaxed form of the generalized nesting property (Arai, Ueno, and Kajitani, 1993). A consequence is that the corresponding parametric maximum flow value function has at most n −1 breakpoints. All the minimum cut capacities can therefore be computed by O(1) maximum flow computations. We will show then that, given O(n) increasing values of the parameter, it is possible to compute the corresponding maximum flows by O(1) maximum flow computations, by suitably extending Goldberg and Tarjan’s maximum flow algorithm.  相似文献   

14.
In this paper,continuous homogeneous selections for the set-valued metric generalized inverses T of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces.Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T are given.The results are an answer to the problem posed by Nashed and Votruba.  相似文献   

15.
On the basis of the method of generalized Lagrange multipliers we obtain optimality conditions in the problem of tracking a given variation in regime of a distributed pipeline gas transport system with an integral quadratic quality criterion. We propose a method and an algorithm for finding optimal controlling actions. We present the results of computation of optimal controls in a homogeneous pipeline. Translated fromDinamicheskie Sistemy, Vol. 11, 1992.  相似文献   

16.
The generalized linear complementarity problem revisited   总被引:5,自引:0,他引:5  
Given a vertical block matrixA, we consider in this paper the generalized linear complementarity problem VLCP(q, A) introduced by Cottle and Dantzig. We formulate this problem as a linear complementarity problem with a square matrixM, a formulation which is different from a similar formulation given earlier by Lemke. Our formulation helps in extending many well-known results in linear complementarity to the generalized linear complementarity problem. We also show that the class of vertical block matrices which Cottle and Dantzig's algorithm can process is the same as the class of equivalent square matrices which Lemke's algorithm can process. We also present some degree-theoretic results on a vertical block matrix.  相似文献   

17.
In this paper we analyze a new location problem which is a generalization of the well-known single facility location model. This extension consists of introducing a general objective function and replacing fixed locations by trajectories. We prove that the problem is well-stated and solvable. A Weiszfeld type algorithm is proposed to solve this generalized dynamic single facility location problem on L p spaces of functions, with p ∈(1,2]. We prove global convergence of our algorithm once we have assumed that the set of demand functions and the initial step function belong to a subspace of L p called Sobolev space. Finally, examples are included illustrating the application of the model to generalized regression analysis and the convergence of the proposed algorithm. The examples also show that the pointwise extension of the algorithm does not have to converge to an optimal solution of the considered problem while the proposed algorithm does.  相似文献   

18.
We show that ifM is the total space of a holomorphic bundle with base space a simply connected homogeneous projective variety and fibre and structure group a compact complex torus, then the identity component of the automorphism group ofM acts trivially on the Dolbeault cohomology ofM. We consider a class of compact complex homogeneous spacesW, which we call generalized Hopf manifolds, which are diffeomorphic to S1 ×K/L whereK is a compact connected simple Lie group andL is the semisimple part of the centralizer of a one dimensional torus inK. We compute the Dolbeault cohomology ofW. We compute the Picard group of any generalized Hopf manifold and show that every line bundle over a generalized Hopf manifold arises from a representation of its fundamental group.  相似文献   

19.
We collect some basic results on canonical affinor structures of classical type on generalized symmetric spaces. Yu. P. Solovyov’s stimulating influence on this topic during its initial stages is illustrated. Using special canonical f-structures on homogeneous k-symmetric spaces, we also present a new collection of homogeneous Hermitian f-manifolds. Dedicated to the memory of Yu. P. Solovyov Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 8, pp. 43–60, 2007.  相似文献   

20.
In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems. Our assignment algorithm is based on applying scaling to a hybrid version of the recentauction algorithm of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing the optimality conditions, and the amount of relaxation is successively reduced to zero. On a network with 2n nodes,m arcs, and integer arc costs bounded byC, the algorithm runs in O( m log(nC)) time and uses very simple data structures. This time bound is comparable to the time taken by Gabow and Tarjan's scaling algorithm, and is better than all other time bounds under thesimilarity assumption, i.e.,C = O(n k ) for somek. We next consider the minimum mean cycle problem. Themean cost of a cycle is defined as the cost of the cycle divided by the number of arcs it contains. Theminimum mean cycle problem is to identify a cycle whose mean cost is minimum. We show that by using ideas of the assignment algorithm in an approximate binary search procedure, the minimum mean cycle problem can also be solved in O( m lognC) time. Under the similarity assumption, this is the best available time bound to solve the minimum mean cycle problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号