首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

2.
The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.  相似文献   

3.
The micellization behavior of MEGA 10 has been studied at nine different temperatures by isothermal titration calorimetry (ITC), and thermodynamics of the process have been evaluated and examined in detail. The aggregation number of the nonionic surfactant has been estimated from the ITC results by a simulation procedure based on the mass action principle of micellization of the surfactant. The cmc of MEGA 10 has shown a minimum in temperature dependence as observed for ionic surfactants. For a comparison, the cmc and related thermodynamic parameters of an ionic surfactant, tetradecyltriphenylphosphonium bromide (C(14)TPB) studied at several temperatures in aqueous medium has been considered. The contributions of the headgroups of both the surfactants to the free energies of their respective micellization have been deciphered and presented.  相似文献   

4.
A simple method for determination of the counterion binding parameter (alpha) and aggregation number (N) from conductivity data is proposed. The method is based on fitting the values of the first derivative of conductivity (kappa) versus total surfactant concentration (c(t)) function according to the equation derived from the mass action model (MAM) by using different conductivity models. Sodium dodecylsulphate (SDS) and dodecyltrimethylammonium bromide (DTAB) were chosen for validation of the proposed method. It was shown that the method gives a fairly accurate values for micellisation parameters of SDS (N=51-64, alpha=0.74-0.75) and DTAB (N=56-62, alpha=0.77-0.79), both in good agreement with the literature data. In addition, application of the proposed method does not require the value of the critical micelle concentration (cmc).  相似文献   

5.
The Scandinavian surface (surfactant) and colloid science owes much of its success to Per Ekwall and Björn Lindman. In this review the main topics shared by their research groups at Åbo Akademi University in Finland and at Lund University in Sweden are described. The nature of surface active substances (cosolvents, co-surfactants and surfactants) and microemulsions are evaluated. It is shown that the properties of medium-chain length surfactants differ dramatically from long-chain surfactants. The phase equilibriums of binary systems are related to the phase equilibriums of ternary and quaternary systems referred to as microemulsions or more recently also as nanoemulsions. A distinction is made between hydrotrope liquids, detergentless microemulsions, surfactant mixture systems and microemulsions. Three component systems are assembled to “true” quaternary microemulsions. An exceptionally comprehensive network of thermodynamic parameters describing molecular site exchange and micelle formation are derived and related mutually. Gibbs free energy, enthalpy, entropy, volume, heat capacity, expansivity and compressibility can be used to illustrate the degree of aggregation cooperativity and to evaluate whether micelle formation is of a first-, second- or intermediate order phase transition. Theoretical simulations and experimental results show that the associate structures of medium-chain length surfactants are quite open and may be deformed due to small aggregation numbers. The self-assembly occurs over a number of distinct steps at a series of experimentally detectable critical concentrations. Despite the low aggregation tendency their phase behavior equals those of long-chain homologs in surfactant mixture and microemulsion systems. A number of models describing the self-assembly are reviewed. Nuclear magnetic resonance (shift, relaxation rate and diffusion), Laser Raman and infrared spectroscopies were chosen as key instruments for molecular interaction characterization since they were used in the collaboration between the research groups in Åbo and in Lund. A new method is introduced in order to evaluate the traditional procedure for extracting limiting parameters which also enables an illustration of the degree of cooperativity. The focus is laid mainly on aqueous, alcoholic, saline and, to a limited extent oil phases of one-, two-, three- and four component systems of water–sodium carboxylates–alcohol–oil. The extensive thermodynamic characterization of these liquid phases and liquid crystalline phases is left out due to space restrictions.  相似文献   

6.
Interfacial behavior, structural, and thermodynamic parameters in relation to the formation of water-in-oil (w/o) microemulsion (μE) with varied surfactant head groups and cosurfactants have been evaluated through dilution technique at different temperature and [water]/[surfactant] mole ratio. Dodecyltrimethylammonium bromide (DTAB), sodium dodecylsulphate (SDS), and polyoxyethylene sorbitan monolaurate (Tween-20) were used as surfactants and n-butanol and n-pentanol were used as cosurfactants. Distribution of cosurfactants between bulk oil and the interface using fixed amount of surfactant at varied [water]/[surfactant] mole ratio and temperature has been studied to evaluate thermodynamic parameters. Associated structural parameters, such as droplet dimension and aggregation number of surfactant and cosurfactant at the droplet interface, have also been evaluated. Spontaneity of the μE formation followed the order DTAB>SDS>Tween-20 for both butanol and pentanol in the studied range of temperature. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.  相似文献   

7.
FTIR-ATR (Fourier Transform Infra-Red-Attenuated Total Reflection) has been used to analyze the surface composition of coalesced acrylic latex films. The behavior of two anionic surfactants has been characterized. It has been found that surfactant distribution depends on the nature of the surfactant. A comparison between the normalized absorbance in transmission and in reflection has shown an enrichment of surfactants at the surfaces of films with a coalescence time of 3 days. The surfactant concentration at the film-air interface is higher than at the film substrate interface. A concentration gradient exists through the film thickness. In addition, the incompatible surfactant migrates towards the interface as coalescence proceeds.  相似文献   

8.
Conductivity and static fluorescence measurements have been carried out at 25 degrees C to study the monomeric and micellar phases of aqueous solutions of mixed micelles constituted by a conventional cationic surfactant, dodecyltrimethylammonium bromide (D(12)TAB), and a tricyclic antidepressant drug, amitriptyline hydrochloride (AMYTP), with aggregation properties. From conductivity data, the total mixed critical micelle concentration and the dissociation degree of the mixed micelle have been obtained, while fluorescence experiments allow for the determination of the total aggregation number, and the micropolarity of micellar inside. Furthermore, the partial contribution of each surfactant to the mixed micellization process, through their critical micelle concentrations and their aggregation numbers have been determined, as well. The solubilization of the drug in the mixed micelles has been also studied through the mass action model, by determining the association constant between the micelles and the drug. From these results, the use of the micelles studied in this work as potential models for vectors of antidepressant drugs of the amitriptyline family has been discussed. The theoretical aspects of the mixed micellization process have been also analyzed.  相似文献   

9.
Summary Multi-layer feed-forward neural networks trained with an error back-propagation algorithm have been used to model retention behaviour of liquid chromatography as a function of the composition of the mobile phases. Conventional hydro-organic and micellar mobile phases were considered. Accurate retention modelling and prediction have been achieved using mobile phases defined by two, three and four parameters. With micellar mobile phases, the parameters involved included the concentrations of surfactant and organic modifier, pH and temperature. It is shown that neural networks provide a competitive tool to model varied inherent nonlinear relationships of retention behaviour with respect to the mobile phase parameters. The soft models defined by the weights of the networks are capable of accommodating all types of linear and nonlinear relationships, neural networks being specially useful when the relationships between retention behaviour and the mobile phase parameters are unknown. However, to train neural networks more experimental points than with hard-modelling methods are required, hence the use of the networks is recommended only for those cases where adequate theoretical or empirical models do not exist.  相似文献   

10.
Sodium dodecylsulfate and cetyltrimethylammonium bromide mixtures are important catanionic systems, as they have an inherent tendency to form vesicle structures. Despite extensive studies on the phase behavior and microstructures, there is dearth of basic information on the aggregation and adsorption behavior of this mixed system. In this work the critical micelle concentration, surface tension reduction effectiveness, surface excess, mixed micelle and monolayer compositions, activity coefficients, interaction parameters, counterion binding and Gibbs energy terms of this mixed system are determined by measuring its surface tension and conductance as a function of composition. The dependence of mixed micelle composition on surfactant concentration has been successfully demonstrated.  相似文献   

11.
The present study is focused on the evaluation of the interfacial composition, thermodynamic properties, and structural parameters of water-in-oil mixed surfactant microemulsions [(cetylpyridinium chloride, CPC+polyoxyethylene (20) cetyl ether, Brij-58 or polyoxyethylene (20) stearyl ether, Brij-78)/1-pentanol/n-heptane, or n-decane] under various physicochemical environments by the Schulman method of cosurfactant titration of the oil/water interface. The estimation of the number of moles of 1-pentanol at the interface (n(a)(i)) and bulk oil (n(a)(o)) and its distribution between these two domains at the threshold level of stability have been emphasized. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. n(a)(i),n(a)(i), standard Gibbs free energy (ΔG(t)(0)), standard enthalpy (ΔH(t)(0)), and standard entropy (ΔG(t)(0)) of transfer process have been found to be dependent on the molar ratio of water to surfactant (ω), type of nonionic surfactant and its content (X(Brij-58 or Brij-78)), oil and temperature. A correlation between (ΔH(t)(0)) and (ΔS(t)(0)) is examined at different experimental temperatures. Bulk surfactant composition dependent temperature insensitive microemulsions have been reported. Associated structural parameters, such as droplet dimensions and aggregation number of surfactant and cosurfactant at the droplet interface have been evaluated using a mathematical model after suitable modifications for mixed surfactant systems. In light of these parameters, the prospect of using these microemulsion systems for the synthesis of nanoparticles and the modulation of enzyme activity has been discussed. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.  相似文献   

12.
13.
The formation of mixed micelles composed of dodecyltrimethylammonium bromide (C12TAB) and a hexamethylated p‐sulfonatocalix[6]arene (SC6HM) was studied by several techniques. It was found that above the critical aggregation concentration the concentrations of free and micellized surfactant are strongly related to that of SC6HM. When there is free SC6HM in solution, the addition of C12TAB mainly results in an increase in the concentration of micellized surfactant, but when all SC6HM has been aggregated, the addition of C12TAB results in a substantial increase in the concentration of free surfactant in solution. When the concentration of free surfactant is equal to the critical micelle concentration of the pure system, a second independent aggregation process is observed. This aggregation behavior has many features that are similar to those of more complex systems that involve surfactants in the presence of oppositely charged polyelectrolytes. In this way, calixarenes can serve as simple models to mimic polyelectrolytes and to gain insight into the complex behavior displayed by these macromolecules.  相似文献   

14.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

15.
The aqueous solutions of mixtures of various conventional surfactants and dimeric anionic and cationic surfactants have been investigated by electrical conductivity, spectrofluorometry, and time-resolved fluorescence quenching to determine the critical micelle concentrations and the micelle aggregation numbers in these mixtures. The following systems have been investigated: 12-2-12/DTAB, 12-2-12/C(12)E(6), 12-2-12/C(12)E(8), 12-3-12/C(12)E(8), Dim3/C(12)E(8), and Dim4/C(12)E(8) (12-2-12 and 12-3-12=dimethylene-1,2- and trimethylene-1,3-bis(dodecyldimethylammonium bromide), respectively; C(12)E(6) and C(12)E(8)=hexa- and octaethyleneglycol monododecylethers, respectively; Dim3 and Dim4=anionic dimeric surfactants of the disodium sulfonate type, Scheme 1; DTAB=dodecyltrimethylammonium bromide). For the sake of comparison the conventional surfactant mixtures DTAB/C(12)E(8) and SDS/C(12)E(8) (SDS=sodium dodecylsulfate) have also been investigated (reference systems). Synergism in micelle formation (presence of a minimum in the cmc vs composition plot) has been observed for the Dim4/C(12)E(8) mixture but not for other dimeric surfactant/nonionic surfactant mixtures investigated. The aggregation numbers of the mixed reference systems DTAB/C(12)E(8) and SDS/C(12)E(8) vary monotonously with composition from the value of the aggregation number of the pure C(12)E(8) to that of the pure ionic component. In contrast, the aggregation number of the dimeric surfactant/C(12)E(8) mixtures goes through a minimum at a low value of the dimeric surfactant mole fraction. This minimum does not appear to be correlated to the existence of synergism in micelle formation. The initial decrease of the aggregation number of the nonionic surfactant upon addition of ionic surfactant, up to a mole fraction of ionic surfactant of about 0.2 (in equivalent per total equivalent), depends little on the nature the surfactant, whether conventional or dimeric. The results also show that the microviscosity of the systems containing dimeric surfactants is larger than that of the reference systems. Copyright 2001 Academic Press.  相似文献   

16.
A methodological supplement has been proposed to author previous paper on the correlation between the mobility and diffusion coefficient (Colloid J., 2016, vol. 78, p. 88). Now, the self-diffusion coefficient has been added to the aforementioned parameters. It has been found when it coincides with the diffusion coefficient and when not. The correlation between the three transport properties has been established, and appropriate schemes of their experimental study have been considered. The computational relations based on the traditional assumption of constant aggregation numbers have been generalized taking into account recent results of studying the effect of variability of surfactant aggregation numbers.  相似文献   

17.
The interaction between sodium dodecylsulfate (SDS) and acrylic acid (AA)–ethyl methacrylate (EMA) copolymers has been investigated using steady state fluorescence and conductimetric measurements to assess the effect of the polymer composition on the aggregation process. Micropolarity studies using the ratio between the emission intensities of the vibronic bands of pyrene (I1/I3) and the shift of the fluorescence emission of pyrene-3-carboxaldehyde show that the interaction of SDS with AA-EMA copolymers occurs at surfactant concentrations smaller than that observed for the pure surfactant in water and depends on the copolymer composition. The increase of ethyl methacrylate in the copolymers lowers the critical aggregation concentration (CAC) due to the larger hydrophobic character of the polymer backbone. The formation of aggregates on the macromolecule is induced mainly by hydrophobic interactions, but the process is also influenced by the ionic strength due to the counter-ions of the polyelectrolyte.  相似文献   

18.
The controlled generation of 2D aggregate networks is studied experimentally using micrometer-sized polystyrene latex particles attached to the oil-water interface. Starting from an initially crystalline monolayer, appropriate combinations of carefully added electrolyte and surfactant enable control over both the fractal dimension and the kinetics of aggregation. Remarkably, the colloidal crystals formed upon first spreading remain stable, even for days, when substantial amounts of electrolyte are added to the aqueous phase. Pressure-area isotherms reveal a slow time evolution of the electrostatic dipole-dipole interaction. When the electrostatic interaction has been sufficiently weakened, aggregation proceeds in well-defined, reproducible manner. The aggregation process is analyzed using quantitative video microscopy. The evolution of the cluster size distribution and its moments is characterized, and static and dynamic scaling exponents are derived to identify the nature of the aggregation process. In the range of concentrations studied here, the kinetics all agree with a "fast", diffusion-limited cluster type of aggregation. However, the fractal dimension strongly depends on the composition of the aqueous subphase. Rather dense structures are found when only electrolyte is used, whereas more open structures are obtained when even small amounts of surfactant are added. It is suggested that this structural dependency is related to the effect of surfactant on the contact angle and its consequences for the anisotropic nature of the capillary interactions.  相似文献   

19.
The interfacial and aggregation behavior of the nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) with the cationic surfactant hexadecyltriphenylphosphonium bromide (HTPB) have been studied using interfacial tension measurements and fluorescence techniques. From interfacial tension measurements, the critical micellar concentrations (cmc) and various interfacial thermodynamic parameters have been evaluated. The experimental results were analyzed in the context of the pseudophase separation model, the regular solution theory, and the Maeda’s approach. These approaches allowed us to determine the interaction parameter and composition in the mixed state. By using the static quenching method, the mean micellar aggregation numbers of pure and mixed micelles of HTPB+Mega-10 were obtained. It was found that that the aggregation number decreases with increasing mole fraction of HTPB. This behavior is attributed to the presence of the bulky head group of HTPB, which creates steric head group incompatibility and/or electrostatic repulsion. The micropolarity of the micelle was monitored with pyrene fluorescence intensity ratio. It was observed that the increasing participation of HTPB induces the formation of micelles with a hydrated structure. The polarization of the fluorescent probe Rhodamine B was monitored in micellar medium and found to increase with the increase of ionic content. This behavior suggests the formation of mixed micelles with a more ordered or rigid structure.  相似文献   

20.
Due to the increasing practical use of mixtures of flavonoids with nonionic surfactants the presented studies were based on the measurements of surface tension and conductivity of aqueous solution of the quercetin (Q) and rutin (Ru) in the mixtures with Triton X-114 (TX114) and Tween 80 (T80) as well as the contact angle of model liquids on the PTFE surface covered by the quercetin and rutin layers. Based on the obtained results components and parameters of the quercetin and rutin surface tension were determined and the mutual influence of Q and Ru in the mixtures with TX114 and T80 on their adsorption and volumetric properties were considered. It was found, among others, that based on the surface tension isotherms of the aqueous solution of the single flavonoid and nonionic surfactant, the surface tension isotherms of the aqueous solution of their mixture, the composition of the mixed monolayer at the water-air interface as well as the CMC of flavonoid + nonionic surfactant mixture can be predicted. The standard Gibbs energy, enthalpy and entropy of the adsorption and aggregation of the studied mixtures were also found, showing the mechanism of the adsorption and aggregation processes of the flavonoid + nonionic surfactant mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号