首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of monovalent doping on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag) materials has been investigated. A large magnetocaloric effect was inferred over a wide range of temperature around the second order paramagnetic–ferromagnetic transition. The maximum magnetic entropy changes (ΔSM) reached 1.8, 2.2, 1.6 and 2.1 J/kg K and the relative cooling power (RCP) approached 58.9, 59.3, 69.6 and 54.6 J/kg for Na, Li, K and Ag doped materials in the magnetic change of 15 kOe, respectively. According to the results determined by the Maxwell relation, the magnetic entropy change fits well with the Landau theory of phase transition above TC for Pr0.5Sr0.3Li0.2MnO3. The large magnetic entropy change induced by low magnetic field suggested that these materials are beneficial for practical applications.  相似文献   

2.
3.
Studies of the structural, magnetic and magnetocaloric properties of polycrystalline Pr0.6−xEuxSr0.4MnO3 (0≤x≤0.15) perovskite manganites were carried out. Substitution for praseodymium with europium, with smaller ionic radius, induces local distortion in the 〈Mn–O–Mn〉 bonds and consequently causes a random distribution in the magnetic exchange interactions. The competition between magnetic interactions leads to the appearance of an inhomogeneous magnetic state in our samples. Pr0.6−xEuxSr0.4MnO3 (x=0, 0.05, 0.1 and 0.15) polycrystalline samples were prepared using the solid–solid reaction method at high temperature. The compounds yielded are single phase and crystallize in the orthorhombic system with the Pnma space group. The substitution of Eu for Pr leads to a decrease of the Curie temperature TC from 303 K for x=0.00 to 260 K for x=0.15. All of our compounds exhibit a large magnetic entropy change with a maximum around 2.2 J/kg K under a magnetic applied field change of 2 T for all compounds.  相似文献   

4.
Magnetic properties and magnetocaloric effects (MCEs) have been investigated in hydrogenated LaFe11.7 Si1.3H x (x=0,1.37, and 2.07) compounds. It is found that the Curie temperature, T C, can be tuned from 192 to 338 K by adjusting the hydrogen content from 0 to 2.07. It is attractive that both thermal and magnetic hysteresis are remarkably reduced because of the weakness of the itinerant-electron metamagnetic transition after hydrogenation. The maximal hysteresis loss at T C decreases from 33.4 to 8.8 J/kg as x increases from 0 to 2.07. For the samples with x=0,1.37, and 2.07, the maximal values of the isothermal magnetic entropy change, ΔS M, are 20.9, 15.1, and 15.83 J/kg K for the increasing field and 20.76 J/kg K, 14.53 J/kg K and 15.61 J/kg K for the decreasing field at T C, with efficient refrigeration capacities of 439, 330, and 304 J/kg for a field change of 0–5 T, respectively. Large reversible MCE and small hysteresis with considerable refrigeration capacity indicate the potential of LaFe11.7Si1.3H x hydride as a candidate magnetic refrigerant around room temperature.  相似文献   

5.
Structural, magnetic and magnetocaloric properties of manganites series with the AMn1−xGaxO3 (A=La0.75Ca0.08Sr0.17 and x=0, 0.05, 0.1 and 0.2) composition have been investigated to shed light on Ga-doping influence. Solid-state reaction method was used for preparation. From XRD study, all samples are found single phase and crystallize in the orthorhombic structure with the Pnma space group. The variation of the magnetization M vs. temperature T, under an applied magnetic field of 0.05 T, reveals a ferromagnetic–paramagnetic transition for all samples. The experimental results indicate that TC decreases from 336 to 135 K with increasing Ga substitution. Magnetocaloric effect (MCE) was estimated, in terms of isothermal magnetic entropy change (−ΔSM), using the M(T, μ0H) data and employing the thermodynamic Maxwell equation. The maximum entropy change and Relative Cooling Power (RCP) show non-monotonic behaviors with increasing the concentration of Gallium. In fact, the maximum value of ΔSMmaxof AMn1−xGaxO3 for x=0.00 and 0.2 samples is found to be, respectively, 2.87 and 1.17 J/kg/K under an applied magnetic field change of 2 T. For the same applied magnetic field (μ0H=2 T), the RCP values are found to vary between 97.58 and 89 J/kg.  相似文献   

6.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

7.
Magnetic properties of rare-earth intermetallics RE2Ni7 (RE=Dy, Ho) are reported. Both the samples undergo two successive magnetic transitions at Th (paramagnetic to ferromagnetic) and Tl (spin reorientation) below 100 K. The transitions are found to be second order in nature as evident from the Arrot plot analysis. Large reversible magnetocaloric effect (MCE) was observed at low temperature in the studied samples. The maximum value of the magnetic entropy change in Ho2Ni7 is found to be −12.5 J/kg K (for 0 to 50 kOe of field change) around 25 K with a high relative cooling power (RCP) of 534 J/kg. The Dy counterpart also shows moderately large values of MCE (−7.3 J/kg K) and RCP (475 J/kg) around the magnetic transition region for similar change in the magnetic field. RE2Ni7 compounds can be promising materials for magnetic refrigeration in the temperature range of helium and hydrogen liquefaction.  相似文献   

8.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

9.
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSMmax of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

10.
The structure, magnetic properties, and magnetocaloric effect of La0.7Ca0.3MnO3 ceramics with different particle sizes have been investigated. It is found that the Curie temperature increases first, and then decreases as particle size decreases and the type of magnetic phase transition changes from first-order to second-order, which may be attributed to surface pressure effects. The maximum magnetic entropy change and relative cooling power (RCP) show non-monotonic behaviors with decreasing the particle size. However, for the 3400 nm sample, the magnetic entropy change −ΔSM reaches the maximum values of 6.41 and 8.63 J/kg K for the field changes of 2.0 and 4.5 T, respectively. Furthermore, the estimated large RCP values under lower magnetic fields in La0.7Ca0.3MnO3 are comparable with those of typical magnetic refrigerant materials in the corresponding temperature range, suggesting those compounds might be promising candidates for magnetic refrigeration.  相似文献   

11.
Polycrystalline perovskite manganites La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) were prepared by sol-gel method. The prepared samples remain single phase with a perovskite structure, revealed by X-ray diffraction. The structure refinement of La0.7−xEuxBa0.3MnO3(x=0.05, 0.1 and 0.15) samples was performed in the hexagonal setting of the Rc space group. The dependence of magnetization M on applied magnetic field H and temperature T was measured carefully near the Curie temperature TC for all the samples. With the increasing Eu content, both the unit cell volume and Curie temperature TC of 298 K has been detected with a maximum of magnetic entropy |ΔSMmax| for the La0.7−xEuxBa0.3MnO3 with x=0.15, reaching a value of 2.3 J/kg K when a magnetic field of 10 kOe was applied and the relative cooling power (RCP) is 46 J/kg. These results suggest that the material may be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

12.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

13.
We report the effects of Al doping on the structure, magnetic properties, and magnetocaloric effect of antiperovskite compounds Ga1−xAlxCMn3 (0≤x≤0.15). Partial substitutions of Al for Ga enhance the Curie temperature (from 250 K for x=0.0 to 312 K for x=0.15) and the saturation magnetization. On increasing the doping level x, the maximum values of the magnetic entropy change (−ΔSM) decreases while the temperature span of ΔSM vs. T plot broadens. Furthermore, the relative cooling power (RCP) is also studied. For 20 kOe, the RCP value tends to saturate at a high doping level (for x=0.12, 119 J/kg at 296 K). However, at 45 kOe, the RCP value increases quickly with increasing x (for x=0.15, 293 J/kg at 312 K). Considering the relatively large RCP and inexpensive raw materials, Ga1−xAlxCMn3 may be alternative candidates for room-temperature magnetic refrigeration.  相似文献   

14.
We present a comprehensive study of the magnetocaloric materials series La(Fe1−xCox)11.9Si1.1 with 0.055<x<0.122. The ferromagnetic samples were manufactured using a novel powder metallurgy process by which industrial scale production is feasible. This new production method makes the materials more attractive as magnetic refrigerants for room temperature magnetic refrigeration. The Curie temperature of the compounds can be easily tuned by altering the Co content and all samples have little magnetic anisotropy and present a second-order magnetic transition so that thermal and magnetic hysteresis is absent. For all seven samples, we have calculated the magnetic entropy change, ΔSM, from initial curve measurements and measured the adiabatic temperature change, ΔTad, directly. In addition, for two of the samples, we determined the heat capacity as a function of applied magnetic field and the thermal conductivity. Where relevant, the results are compared with those of Gd, the benchmark material for room temperature magnetic refrigeration.  相似文献   

15.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

16.
E. Yüzüak  I. Dincer  Y. Elerman 《中国物理 B》2010,19(3):37502-037502
The magnetocaloric properties of the Gd 5 Ge 2.025 Si 1.925 In 0.05 compound have been studied by x-ray diffraction,magnetic and heat capacity measurements.Powder x-ray diffraction measurement shows that the compound has a dominant phase of monoclinic Gd5Ge2Si2-type structure and a small quantity of Gd 5(Ge,Si) 3-type phase at room temperature.At about 270 K,this compound shows a first order phase transition.The isothermal magnetic entropy change(△SM) is calculated from the temperature and magnetic field dependences of the magnetization and the temperature dependence of MCE in terms of adiabatic temperature change(△Tad) is calculated from the isothermal magnetic entropy change and the temperature variation in zero-field heat-capacity data.The maximum S M is 13.6 J·kg-1·K-1 and maximum △Tad is 13 K for the magnetic field change of 0-5 T.The Debye temperature(θD) of this compound is 149 K and the value of DOS at the Fermi level is 1.6 states/eV·atom from the low temperature zero-field heat-capacity data.A considerable isothermal magnetic entropy change and adiabatic temperature change under a field change of 0-5 T jointly make the Gd5Ge2.025Si1.925 In 0.05 compound an attractive candidate for a magnetic refrigerant.  相似文献   

17.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

18.
Low field inverse magnetocaloric effect (IMCE) associated with first-order martensitic transition in Ni50−x Mn37+x In13 (x=3,4,5) alloys was investigated. By tuning the composition of Ni/Mn, large change in the magnetization occurring between martensite and austenite phases in a narrow temperature interval was achieved, which results in large IMCE. Under low magnetic field change of 2 T, a large positive magnetic entropy change (ΔS M ) of 23.5 J/kg K with a net refrigeration capacity of 53 J/kg was obtained near room temperature (308 K) in the x=3 alloy. The results show that a small variation in Ni/Mn ratio significantly influences the martensitic transition temperature and the associated magnetic and magnetocaloric properties.  相似文献   

19.
刘喜斌  沈保根 《物理学报》2005,54(12):5884-5889
研究了Mn5Ge2.7M0.3(M=Ga,Al,Sn)化合物的磁性和磁熵变. x射线衍射实验表明,研究的化合物均呈六角Mn5Si3型结构. 三种原子对Ge原子的替代,使得平均Mn原子磁矩下降,但居里温度没有明显的变化. 由于磁矩的降低,导致磁熵变值的下降,在磁场变化为4.0×106A·m-1时,对应于M=Ga,Al和Sn的样品,最大磁熵变值ΔSmax分别为6.1,6.3和5.3J·kg-1K-1,但磁熵变峰值的半高宽ΔTFWHM有所增加. 另外,Mn5Ge2.7M0.3(M=Ga,Al,Sn)化合物在高于居里温度的Arrott曲线上出现了一个不连续点,即样品在一定温度下的顺磁磁化率在某一临界磁场下发生了突变,临界磁场与温度几乎呈正比关系.这可能是由于样品在加一定磁场时3d带的费米能级发生了变化,使得有效电子数的减少所致. 关键词: 居里温度 平均Mn原子磁矩 磁熵变 Arrott图  相似文献   

20.
Single-phase polycrystalline samples of La0.67Ca0.33Mn1−xO3 (x=0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1−xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained in the La0.67Ca0.33Mn0.98O3 sample. The entropy change reaches |ΔSM|=3.10 J kg−1 K−1 at its Curie temperature (264 K) under an applied magnetic field H=10 kOe, which is almost the same value as that of pure Gd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号