首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface characterization of MgY and NH(4)Y zeolites was performed using inverse gas chromatography (IGC). The adsorption thermodynamic parameters (the standard enthalpy (DeltaH degrees ), standard entropy change (DeltaS degrees ), and free energy change of adsorption (DeltaG degrees ), the dispersive component of the surface free energies (gamma(S)(d)), and the acid-base character of the surface of MgY and NH(4)Y zeolites were estimated using the retention time of different non-polar and polar probes at infinite dilution region. The specific free energy of adsorption (DeltaG(sp)), the specific enthalpy of adsorption (DeltaH(sp)), and the specific entropy of adsorption (DeltaS(sp)) of polar probes on MgY and NH(4)Y zeolites were determined. The values of the DeltaH(sp) were correlated with both the donor and acceptor numbers of the probes to quantify the acidic K(A) and the basic K(D) parameters of the zeolite surfaces. The values obtained for the K(A) and K(D) parameters indicated a basic character for the surface of MgY and NH(4)Y zeolites.  相似文献   

2.
周良芹  付大友  袁东  范金龙  谭文渊 《色谱》2015,33(1):96-100
采用水热合成法制备了锌镁铝类水滑石(ZnMgAl-HTLC),利用X射线衍射仪(XRD)对ZnMgAl-HTLC的晶体结构进行了表征,并以一系列非极性和极性分子为探针分子,采用反气相色谱法(IGC)研究了ZnMgAl-HTLC的表面性能.结果表明:XRD特征衍射峰窄、尖、高,水热合成法能够制得纯度较高的ZnMgAl-HTLC; ZnMgAl-HTLC表面吸附自由能小于零,表面色散自由能最大为6.02 mJ/m2,酸碱作用自由能最大为5.33 kJ/mol,吸附焓为43.6 kJ/mol,吸附熵为0.15 kJ/mol.本文的反气相色谱方法对研究锌镁铝类水滑石的表面性能具有重要的指导意义.  相似文献   

3.
陈亚丽  王强  邓丽霜  张正方  唐军 《色谱》2013,31(2):147-150
采用反相气相色谱(IGC)技术研究了不同温度下1-烯丙基-3-甲基氯代咪唑([AMIM]Cl)的表面性质。以正己烷、正庚烷、正辛烷和正壬烷作为非极性探针分子测定[AMIM]Cl在343.15、353.15、363.15和373.15 K温度下的表面色散自由能;以二氯甲烷、三氯甲烷、丙酮、乙酸乙酯、四氢呋喃作为极性探针分子测定离子液体Lewis酸碱性质,并测定了吸附自由能和吸附自由焓变等热动力学参数。实验结果表明,[AMIM]Cl的酸解离平衡常数Ka为0.34,碱解离平衡常数Kb为1.68,其表面呈Lewis两性偏碱性特点。在343.15、353.15、363.15和373.15 K温度下,[AMIM]Cl的表面色散自由能分别为52.26、50.82、46.08和42.05 mJ/m2。这一结果对研究离子液体的表面性质及应用有指导作用。  相似文献   

4.
In the present study, the potential relationships between the microstructure and the surface properties of different cotton fibers are analyzed by inverse gas chromatography (IGC) at infinite dilution. By measuring the retention time of polar and nonpolar gaseous probes into a column containing the fibers, surface characteristics of these fibers, in particular the dispersive component of their surface energy and their surface morphological index, were determined. It is clearly shown that the presence of natural waxes on cotton fibers plays a major role on their thermodynamic surface properties, affecting the surface energy and the acid-base character as well as the morphological aspects of such fibers. Finally, it appeared that IGC is a well appropriate method for the evaluation of the surface characteristics of cotton fibers.  相似文献   

5.
The objective of this work was to characterize the degree of heterogeneity brought about by oxygen plasma treatment of carbon fibers by studying its effects on the adsorption of n-alkanes. Untreated and unsized high-strength carbon fibers were subjected to oxygen plasma treatments with different degrees of severity. A sample of the same material oxidized following a standard industrial method was also studied for comparison. Adsorption of C5-C10n-alkanes at 303-353 K was measured by inverse gas chromatography (IGC). Elution peaks were symmetrical for the fresh and industrially oxidized samples; however, a large extent of asymmetry was observed for the plasma-treated fibers. Differences in surface heterogeneity were quantified in terms of several adsorption thermodynamic magnitudes. Differential heats of adsorption exhibited values similar to those corresponding to the probe-basal plane interaction. The dispersive component of the surface tension of the solids increased clearly upon plasma oxidation, the increase being systematic according to the severity of plasma treatment. It can be concluded that plasma oxidation generates high-surface-energy sites responsible for trapping of n-alkane molecules, this effect being more marked as the chain length increases. The possibility of this effect being associated to creation of micropores was ruled out on the basis of volumetric CO2 adsorption experiments and IGC measurements at finite dilution. Scanning tunneling microscopy observations allowed us to establish a possible connection between fiber surface nanostructure and IGC results. The sites accessible to n-alkane molecules in the industrially oxidized sample seem to be highly disordered, thus leading to a weaker interaction with the adsorbate.  相似文献   

6.
采用反相气相色谱技术,将正己烷、正庚烷、正辛烷、正壬烷作为非极性分子探针,乙醚、丙酮、三氯甲烷作为极性分子探针在50℃、60℃、70℃和80℃条件下测定了可溶性聚酰亚胺HQDPA-DMMDA的表面色散自由能与表面Lewis酸碱性质.HQDPA-DMMDA在50℃、60℃、70℃和80℃的表面色散自由能分别为34.37、31.80、29.50和27.64 mJ/m2,自由能随温度的升高而线性降低.实验发现,HQDPA-DMMDA为弱的Lewis两性聚合物材料,其Lewis酸常数Ka为0.4115,碱常数Kb为0.5812.  相似文献   

7.
Xu Y  Lin J  Xia J  Hu B 《色谱》2011,29(3):249-253
漆酚钛螯合高聚物(UTP)具有优异的耐强酸、耐强碱、耐盐类溶液、耐多种有机溶剂和耐热性能。为进一步扩大其应用领域提供理论和实验依据,采用反气相色谱法(IGC)测定了UTP在70、80、90、100和110 ℃下的表面色散自由能和表面Lewis酸碱常数。以正戊烷(C5)作为标定色谱死时间的探针分子,正己烷、正庚烷、正辛烷和正壬烷作为非极性探针分子,计算了不同温度下UTP的色散表面自由能;以四氢呋喃、丙酮和三氯甲烷作为极性探针分子,计算得到了UTP表面的酸碱作用吸附自由能和吸附焓。实验结果表明: 在70、80、90、100和110 ℃时UTP的色散表面自由能分别为37.68、33.53、35.92、24.01和31.32 mJ/m2; UTP为弱的Lewis碱,Lewis酸常数Ka为0.1853,碱常数Kb为0.9662。这一结果对研究漆酚金属螯合高聚物的表面性质与应用具有指导作用。  相似文献   

8.
The surface properties of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl polyhedral oligomeric silsesquioxane) (poly(MMA-co-BA-co-styryl-POSS)) were studied by means of inverse gas chromatography (IGC) using 10 non-polar and polar solvents as the probes. Thermodynamic parameters of adsorption, e.g., specific retention volume, the dispersive component of the surface free energy, the specific interaction contribution to the free energy of adsorption and the acid/base constants were obtained to investigate the interactions between the surfaces of the copolymers and different solvents. It was found that incorporation of styryl-POSS into polymer resulted in increasing interactions between polymers and solvents, dispersive component of surface free energy of polymer and acidity of the surfaces of the polymers. The more the styryl-POSS were embedded, the stronger the interaction between the polymer surface and solvent, the dispersive component of the surface free energy and the acidity of the polymer surface were.  相似文献   

9.
The surface energy of a semifluorinated salicylaldimine liquid crystal has been characterised by inverse gas chromatography over the temperature range 303 to 323 K using n-alkanes, tetrahydrofurane, dichloromethane, chloroform, acetone and ethyl acetate molecular probes. The dispersive component of the surface free energy of the adsorbent surface studied was calculated according to the approaches of Fowkes and Dorris–Gray in the infinite dilution region. The specific free energy, enthalpy and entropy of adsorption of polar probes on the liquid crystal were determined. The values of the specific enthalpy of adsorption were correlated with both the donor and the acceptor numbers of the probes to quantify the acidic and the basic parameters of the liquid crystal surface. The surface of the semifluorinated salicylaldimine liquid crystal was found to show a basic nature, which determined the nature of its interaction with the polar probes.  相似文献   

10.
Inverse gas chromatography (IGC) has been used to study the Lewis acid-base properties of a technologically and commercially important core-shell type elastomer (MBS rubber). The parameters determined were the dispersive component of the surface tension, the surface free energy, the enthalpy and the entropy of adsorption of polar and apolar probes, the surface Lewis acidity constant (Ka), and the surface Lewis basicity constant (Kb). The results show that the MBS rubber is amphoteric but strongly Lewis basic. It is weakly Lewis acidic. The results are in accord with the analysis of the molecular structure of PMMA, the shell component of this impact modifier (IM). The interactivity of this elastomer with the remaining materials in multicomponent polymeric systems is expected to be strongly influenced by the particular surface energetic properties of the MBS rubber. The results presented would contribute to the interpretation, forecast and optimization of the adhesion properties and phase preferences shown by this impact modifier when incorporated in such complex polymeric systems as polymer blends and composites.  相似文献   

11.
Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result.  相似文献   

12.
Inverse Gas Chromatography (IGC) is a gas sorption technique to determine the surface energy of natural fibres. The surface energy is directly related to the thermodynamic work of adhesion and it reflects the fibre adsorption capacity and its wettability. However, natural fibres have a complex surface chemistry of numerous organic species and present physical asperities that render the surface energetically heterogeneous. Since IGC is typically performed at infinite dilution where only the higher energetic sites interact with the solvent, a single measure of surface energy is likely to be misleading as the surface energy changes with changing chemical composition. Here we present the dispersive and acid-base surface energy profiles of flax and kenaf fibres as well as continuous filament fibres produced by a dry jet, wet spinning process (cellulose B). We injected a series of n-alkanes at finite dilution to obtain the dispersive energy distribution profile at \(30\,^{\circ }\hbox {C}\) and 0% RH. The acid-base contributions were determined by injection of mono polar probes (dichloromethane, ethylacetate) at the same surface coverages and applying the Van Oss method. The cellulose B fibres were the most energetically homogeneous, while the bast fibres were shown to have a higher polar component and much broader surface energy distributions than the cellulose fibres.  相似文献   

13.
The adsorption of different alkanes (linear and cyclic), aromatics, and chlorohydrocarbons onto different nonmicroporous carbons--multiwalled carbon nanotubes (CNTs), carbon nanofibers (CNFs), and high-surface-area graphites (HSAGs)--is studied in this work by inverse gas chromatography (IGC). Capacity of adsorption was derived from the isotherms of adsorption, whereas thermodynamic properties (enthalpy of adsorption, surface free energy characteristics) have been determined from chromatographic retention data. HSAGs present the highest adsorption capacity, followed by CNTs and CNFs (although CNTs present an intermediate surface area between the two HSAG studied). Among the different adsorbates tested, benzene exhibits the highest adsorption capacity, and the same trend is observed in the enthalpy of adsorption. From surface free energy data, enthalpies of adsorption of polar compounds were divided into dispersive and specific contributions. The interactions of cyclic (benzene and cyclohexane) and chlorinated compounds (trichloroethylene, tetrachloroethylene, and chloroform) with the surfaces are mainly dispersive over all the carbons tested, CNTs being the material with the highest dispersive contribution, as was deduced also from the entropy parameter. Adsorption parameters were correlated with morphological and chemical properties of the materials.  相似文献   

14.
《Fluid Phase Equilibria》1987,38(3):227-244
The experimental literature data on vapor-liquid equilibria (VLE), excess molar Gibbs energies, molar excess enthalpies and activity coefficients and partial molar excess enthalpies at infinite dilution of 1-bromoalkane + n-alkane mixtures are interpreted in terms of the DISQUAC group contribution model. The model reproduces fairly well most of the experimental data using a pair (Gibbs energy and enthalpy) of constant quasichemical interchange energies and a pair (Gibbs energy and enthalpy) of dispersive interchange energies. The dispersive interchange energies of bromoethane and of the higher 1-bromoalkanes are constant, but larger than for bromomethane. Several sets of VLE data are likely to be in error. Characteristic discrepancies between calculated and experimental values are observed in mixtures containing molecules of widely different sizes. The dispersive interchange energies of 1-chloro, 1-bromo- and 1-iodoalkanes increase in the order Cl < Br < I, as do the differences between the cohesive energy densities of haloalkanes and n-alkanes. The quasichemical interchange energies decrease in the order Cl > Br > I, almost linearly with the increasing relative surface of the halogen groups. Tentative values for the interchange energies of 1-fluoroalkanes + n-alkanes were estimated from the few available experimental data.  相似文献   

15.
This Letter reports a technique of measuring polar surface energy distributions of lactose using inverse gas chromatography (IGC). The significance of this study is that the total surface energy distributions can now be characterized by combining the already known dispersive surface energy distribution with polar surface energy distribution determined in this study. The polar surface energy was calculated from the specific free energies for surface interactions with a monopolar basic probe, ethyl acetate, and a monopolar acidic probe, dichloromethane.  相似文献   

16.
Inverse gas chromatography (IGC) was applied to characterize the surface energy of organically modified silicates (ormosils) by measuring the interaction of molecular organic probes with the ormosil surface. Ormosils were prepared by the sol-gel method by the reaction of TEOS (tetraethoxysilane), PDMS (polydimethylsiloxane) and different types of silica (Aerosil 130, Aerosil 200 and Aerosil 380). The isosteric heat of adsorption, q st, and the dispersive component of the surface energy, s D, were estimated by using the retention volume of different nonpolar and polar probes at infinite dilution. The dispersive component shows an increase as the specific surface area of the silica is increased from 29.6 mJ/m2 to 51.4 mJ/m2 at 60°C. Such values are lower than that obtained for aerosil particles meaning that PDMS chains impede the interaction with silanol groups located on the silica surface. The specific interaction parameter, ISP, and the enthalpy of specific adsorption, H a SP, of polar probes on the ormosil surface were also measured in order to obtain the acid-base character of ormosil surface. The H a SP, was correlated with the donor, DN, and the acceptor, AN, numbers of the probes to quantify the acidic, K A, and the basic, K B, parameters of the substrate surface. The obtained results suggest that the silica particles were covered by PDMS chains in a different way depending on the type of silica used. The values of K A and K B suggest that the ormosil surface is amphoteric, with predominantly acceptor electron sites.  相似文献   

17.
反相气相色谱法表征聚丁二烯橡胶的表面性质   总被引:1,自引:0,他引:1  
Wang Q  Ma F  Tian H  Song Y  Xu W  Tang J 《色谱》2011,29(5):462-465
采用反相气相色谱技术测定了聚丁二烯橡胶的表面性质。以正己烷、正庚烷、正辛烷、正壬烷作为非极性探针测定其表面色散自由能,以二氯甲烷、三氯甲烷、丙酮、乙酸乙酯、乙醚和四氢呋喃作为极性探针测定其路易斯酸碱常数。经计算得出聚丁二烯橡胶在303、313、323、333和343 K的表面色散自由能分别为47.07、46.46、45.85、45.60和45.09 mJ/m2。结果表明,聚丁二烯橡胶表面色散自由能随着温度的升高呈线性降低,路易斯酸常数Ka为0.34,碱常数Kb为1.77,总酸碱作用能力2.11,该聚合物为弱碱性Lewis两性聚合物材料。此外还计算出聚丁二烯橡胶的酸碱作用吸附自由能(~ΔGsa)和吸附焓(~ΔHsa)。  相似文献   

18.
The physicochemical surface properties of cellulose and lignocellulosic materials are of major importance in the context of the production of composites, in papermaking, and textile area. These properties can be evaluated by using inverse gas chromatography (IGC), a particularly suitable technique for the characterization of the surface properties of fibrous materials and powders. At infinite dilution conditions of appropriate gas probes, IGC may provide important parameters including the dispersive component of the surface energy of the material under analysis, thermodynamic data on the adsorption of specific probes, and Lewis acid–base interaction parameters between the matrix and the filler of composite materials. This paper critically reviews the most relevant results available in the literature concerning the characterization of cellulose and lignocellulosic materials using IGC. Emphasis will be put into the cellulose and nanocellulose surface properties, changes in the surface properties of cellulose and lignocellulosic materials after chemical and physical modifications, and in the compatibility of cellulose-based materials with polymeric matrices. The surface properties of non-woody fibers will also be considered. Before discussing the results available in the literature, the theoretical background and the main approaches used for the calculation of parameters accessed by IGC will be given. It is expected that this review can contribute to a better knowledge of the physicochemical surface properties of cellulosics.  相似文献   

19.
Inverse gas chromatography (IGC) at infinite dilution, is a technique for characterising solid surfaces. Current practice is the injection of n-alkane homologous series to obtain the free energy of adsorption of the CH2 group, from which the London component of the solid surface free energy, gamma(d)s, is calculated. A value around 40 mJ/m2 is obtained for poly(ethylene), and 30 mJ/m2 for a clean glass fibre, while the potential surface interactivity of a glass fibre is far greater than that of poly(ethylene). A specific component of the surface, in mJ/m2, should be calculated in order to obtain significant parameters. As applied up to date, when calculating the specific component of the surface energy, the fact that W(sp)a energy values are in a totally different scale than AN or DN values is a major drawback. Consequently, Ka and Kb values obtained are in arbitrary energy units, different from those of the London component measured by injecting the n-alkane series. This paper proposes a method to obtain Ka and Kb values of the surface in the same energetic scale than the London component. The method enables us to correct the traditional London component of a solid, obtaining a new value, where the amount of WaCH2 accounting for Debye interactions with polar sites, is excluded. As a result, an approach to surface mapping is performed in several different substrate materials. We show results obtained on different solid surfaces: poly(ethylene), clean glass fibre, glass beads, chemically modified glass beads and carbon fibre.  相似文献   

20.
Two cement pastes, commonly used in concrete formulations, were characterised by IGC at 35-80 degrees C before and after coating with an epoxy resin and a hardener. The cements are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxide Ca(OH)2. Apolar and polar probes were used to determine the dispersive and acid-base characteristics of the cement pastes. These materials have high surface energy as judged from the dispersive contribution to the surface free energy (gamma(s)d) values lying in the 50-70 mJ/m2 range at 60-80 degrees C. Examination of the specific interactions permitted to show that the cement pastes are strongly amphoteric species with a substantial predominant Lewis basicity that is in line with the basic pH of their aqueous suspensions. Following coating with an epoxy resin (DGEBA) and a hardener (triethylene tetramine), the surface energy of the cements decreases substantially with the mass loading of the organic material. The surface thermodynamic properties were also correlated with the surface chemical composition as determined by X-ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号