首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic platinum(II) complexes [((t)bpy)Pt(Ph)(L)](+) [(t)bpy =4,4'-di-tert-butyl-2,2'-bipyridyl; L = THF, NC(5)F(5), or NCMe] catalyze the hydrophenylation of ethylene to generate ethylbenzene and isomers of diethylbenzene. Using ethylene as the limiting reagent, an 89% yield of alkyl arene products is achieved after 4 h at 120 °C. Catalyst efficiency for ethylene hydrophenylation is diminished only slightly under aerobic conditions. Mechanistic studies support a reaction pathway that involves ethylene coordination to Pt(II), insertion of ethylene into the Pt-phenyl bond, and subsequent metal-mediated benzene C-H activation. Studies of stoichiometric benzene (C(6)H(6) or C(6)D(6)) C-H/C-D activation by [((t)bpy)Pt(Ph-d(n))(THF)](+) (n = 0 or 5) indicate a k(H)/k(D) = 1.4(1), while comparative rates of ethylene hydrophenylation using C(6)H(6) and C(6)D(6) reveal k(H)/k(D) = 1.8(4) for the overall catalytic reaction. DFT calculations suggest that the transition state for benzene C-H activation is the highest energy species along the catalytic cycle. In CD(2)Cl(2), [((t)bpy)Pt(Ph)(THF)][BAr'(4)] [Ar' = 3,5-bis(trifluoromethyl)phenyl] reacts with ethylene to generate [((t)bpy)Pt(CH(2)CH(2)Ph)(η(2)-C(2)H(4))][BAr'(4)] with k(obs) = 1.05(4) × 10(-3) s(-1) (23 °C, [C(2)H(4)] = 0.10(1) M). In the catalytic hydrophenylation of ethylene, substantial amounts of diethylbenzenes are produced, and experimental studies suggest that the selectivity for the monoalkylated arene is diminished due to a second aromatic C-H activation competing with ethylbenzene dissociation.  相似文献   

2.
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.  相似文献   

3.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

4.
At elevated temperatures (90-130 degrees C), complexes of the type TpRu(PMe3)2X (X = OH, OPh, Me, Ph, or NHPh; Tp = hydridotris(pyrazolyl)borate) undergo regioselective hydrogen-deuterium (H/D) exchange with deuterated arenes. For X = OH or NHPh, H/D exchange occurs at hydroxide and anilido ligands, respectively. For X = OH, OPh, Me, Ph, or NHPh, isotopic exchange occurs at the Tp 4-positions with only minimal deuterium incorporation at the Tp 3- or 5-positions or PMe3 ligands. For TpRu(PMe3)(NCMe)Ph, the H/D exchange occurs at 60 degrees C at all three Tp positions and the phenyl ring. TpRu(PMe3)2Cl, TpRu(PMe3)2OTf (OTf = trifluoromethanesulfonate), and TpRu(PMe3)2SH do not initiate H/D exchange in C6D6 after extended periods of time at elevated temperatures. Mechanistic studies indicate that the likely pathway for the H/D exchange involves ligand dissociation (PMe3 or NCMe), Ru-mediated activation of an aromatic C-D bond, and deuteration of basic nondative ligand (hydroxide or anilido) or Tp positions via net D+ transfer.  相似文献   

5.
TpRu(PMe3)2(OH) (1) reacts with C6D6 to initiate H/D exchange between the hydroxide ligand and the deuterated benzene. In addition, complex 1 catalyzes H/D exchange between H2O and C6D6. Mechanistic and computational studies suggest that a likely reaction pathway for the H/D exchange involves loss of PMe3 to produce {TpRu(PMe3)(OH)}, followed by the net addition of a benzene C-H(D) bond across the Ru-OH bond to form the putative complex TpRu(PMe3)(OH2)(Ph).  相似文献   

6.
Complex 3, [Ru(eta2-BH4)(CO)(Et)L2] (L = PMe2Ph) can be converted by nucleophiles L' {a, PMe2Ph; b, P(OMe)3; c, Me3CNC; d, CO} to alkyl and acyl complexes [Ru(eta1-BH4)(CO)(Et)L2L'] (4a), [Ru(eta2-BH4)(COEt)L2L'] (5a-d), and [Ru(eta1-BH4)(COEt)L2L'2] (7d and isomers 7c and 10c). Deprotection can then be achieved under conditions mild enough to allow study of the resulting alkyl hydride complexes [Ru(CO)(Et)HL2L'] (1a, 1b) and acyl hydride complexes [Ru(COEt)HL2L'2] (8c, 8d) prior to elimination of ethane and propanal respectively, with formation of ruthenium(0) complexes [Ru(CO)L2L'2] (6a, 6b, 6d). With Me3CNC, however, the final product is (depending on the solvent used) [Ru(CNCMe3)2{C(H)NCMe3}(COEt)L2] (9c) or [Ru(CNCMe3)3(COEt)L2]+ (11c). Successive treatment of [Ru(eta2-BH4)(CO)HL2], , with ethene and then CO yields propanal, but turning this into a catalytic cycle is hindered by the greater readiness of to yield propanal non-catalytically (reacting with CO) than catalytically (reacting with H2).  相似文献   

7.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

8.
TpRuII(CO)(Me)(NCMe) (Tp = hydridotris(pyrazolyl)borate) serves as a catalyst precursor for the conversion of benzene and ethylene or propene to alkylaromatic products. The reaction proceeds via the formation of the active catalyst TpRu(CO)(Ph)(NCMe) and is mildly selective for linear propylbenzene over isopropylbenzene.  相似文献   

9.
Addition of 1.0 equiv of Ph3SiH to [Cp*(PMe3)Rh(Me)(CH2Cl2)]+BAr'4- (1) resulted in release of methane and quantitative formation of [Cp*(PMe3)Rh(SiPh3)(CH2Cl2)]+BAr'4- (2). Subsequent addition of 1.0 equiv of MeCN to 2 caused immediate displacement of dichloromethane to form the eta1-nitrile adduct [Cp*(PMe3)Rh(SiPh3)(NCMe)]+BAr'4- (3). Upon standing at room-temperature overnight, complex 3 converted quantitatively to another product which has been characterized as the C-C activation product, [Cp*(PMe3)Rh(Me)(CNSiPh3)]+BAr'4- (5). Addition of other nitrile substrates (R-CN, R = Ph, (4-CF3)Ph, (4-MeO)Ph, iPr, tBu) to 2 also resulted in C-C activation of the R-CN bond to form [Cp*(PMe3)Rh(R)(CNSiPh3)]+BAr'4-. Evidence for an eta2-iminoacyl intermediate complex, [Cp*(PMe3)Rh(eta2-C(R)=N(SiPh3)]+BAr'4-, is also presented.  相似文献   

10.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

11.
RhCl(PMe3)3 (1) reacts with benzene under irradiation to give the oxidative addition product, Rh(C6H5)(H)Cl(PMe3)3 (2). The reaction is promoted under CO2 atmosphere. The structure of 2 was fully characterized by X-ray crystallography as well as NMR, IR, and elemental analysis. The adduct (2) is unstable in solution even at room temperature to regenerate benzene and 1. The thermolysis of 2 under a CO atmosphere produces benzaldehyde along with the reductive elimination product, benzene. On the other hand, the prolonged photoreaction of 1 with benzene under CO2 resulted in the activation of the C-H bond and CO2 to yield Rh(C6H5)(eta2-CO3)(PMe3)3 (3).  相似文献   

12.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

13.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

14.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

15.
The tetrahydroborate ligand in [Ru(eta(2)-BH(4))(CO)H(PMe(2)Ph)(2)], 1, allows conversion under very mild conditions to [Ru(CO)(Et)H(PMe(2)Ph)(3)], 7, by way of [Ru(eta(2)-BH(4))(CO)Et(PMe(2)Ph)(2)], 4. Deprotection of the hydride ligand in 7(by BH(3) abstraction) occurs only in the final step, thus preventing premature ethane elimination. A deviation from the route from 4 to 7 yields [Ru(eta(2)-BH(4))(COEt)(PMe(2)Ph)(3)], 6, but does not prevent ultimate conversion to 7. Modification of the treatment of 4 yields an isomer of 7, 10. Both isomers eliminate ethane at temperatures above 250 K: the immediate product of elimination, thought to be [Ru(CO)(PMe(2)Ph)(3)], 11, can be trapped as [Ru(CO)(PMe(2)Ph)(4)], 12, [Ru(CO)H(2)(PMe(2)Ph)(3)], 3a, or [Ru(CO)(C[triple bond]CCMe(3))H(PMe(2)Ph)(3)], 13. The elimination is a simple first-order process with negative DeltaS(++) and (for 7) a normal kinetic isotope effect (k(H)/k(D)= 2.5 at 287.9 K). These results, coupled with labelling studies, rule out a rapid equilibrium with a [sigma]-ethane intermediate prior to ethane loss.  相似文献   

16.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

17.
The late-transition-metal parent amido compound [Ir(Cp*)(PMe3)(Ph)(NH2)] (2) has been synthesized by deprotonation of the corresponding ammine complex [Ir(Cp*)(PMe3)(Ph)(NH3)][OTf] (6) with KN(SiMe3)2. An X-ray structure determination has ascertained its monomeric nature. Proton-transfer studies indicate that 2 can successfully deprotonate p-nitrophenylacetonitrile, aniline, and phenol. Crystallographic analysis has revealed that the ion pair [Ir(Cp*)(PMe3)(Ph)(NH3)][OPh] (8) exists as a hydrogen-bonded dimer in the solid state. Reactions of 2 with isocyanates and carbodiimides lead to overall insertion of the heterocumulenes into the N--H bond of the Ir-bonded amido group, demonstrating the ability of 2 to act as an efficient nucleophile. Intriguing reactivity is observed when amide 2 reacts with CO or 2,6-dimethylphenyl isocyanide. eta4-Tetramethylfulvene complexes [Ir(eta4-C5Me4CH2)(PMe3)(Ph)(L)] (L=CO (15), CNC6H3-2,6-(CH3)2 (16)) are formed in solution through displacement of the amido group by the incoming ligand followed by deprotonation of a methyl group on the Cp* ring and liberation of ammonia. Conclusive evidence for the presence of the Ir-bonded eta4-tetramethylfulvene moiety in the solid state has been provided by an X-ray diffraction study of complex 16.  相似文献   

18.
Chromium and ruthenium complexes of the chelating phosphine borane H(3)B.dppm are reported. Addition of H(3)B.dppm to [Cr(CO)(4)(nbd)](nbd = norbornadiene) affords [Cr(CO)(4)(eta1-H(3)B.dppm)] in which the borane is linked to the metal through a single B-H-Cr interaction. Addition of H(3)B.dppm to [CpRu(PR(3))(NCMe)(2)](+)(Cp =eta5)-C(5)H(5)) results in [CpRu(PR(3))(eta1-H(3)B.dppm)][PF(6)](R = Me, OMe) which also show a single B-H-Ru interaction. Reaction with [CpRu(NCMe)(3)](+) only resulted in a mixture of products. In contrast, with [Cp*Ru(NCMe)(3)](+)(Cp*=eta5)-C(5)Me(5)) a single product is isolated in high yield: [Cp*Ru(eta2-H(3)B.dppm)][PF(6)]. This complex shows two B-H-Ru interactions. Reaction with L = PMe(3) or CO breaks one of these and the complexes [Cp*Ru(L)(eta1-H(3)B.dppm)][PF(6)] are formed in good yield. With L = MeCN an equilibrium is established between [Cp*Ru(eta2-H(3)B.dppm)][PF(6)] and the acetonitrile adduct. [Cp*Ru (eta2-H(3)B.dppm)][PF(6)] can be considered as being "operationally unsaturated", effectively acting as a source of 16-electron [Cp*Ru (eta1-H(3)B.dppm)][PF(6)]. All the new compounds (apart from the CO and MeCN adducts) have been characterised by X-ray crystallography. The solid-state structure of H(3)B.dppm is also reported.  相似文献   

19.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

20.
Cationic iminoacyl-carbonyl tungsten complexes of the type [W(CO) (eta (2)-MeNCR)(acac) 2] (+) (acac = acetylacetonate; R = Ph ( 1a), Me ( 1b)) easily undergo thermal substitution of CO with two-electron donors to yield [W(L)(eta (2)-MeNCR)(acac) 2] (+) (L = tert-butylisonitrile [R = Ph ( 2a), Me ( 2b)], 2,6-dimethylphenylisonitrile [R = Me ( 2c)], triphenylphosphine [R = Ph ( 3a), Me ( 3c)], and tricyclohexylphosphine [R = Ph ( 3b)]). Tricyclohexylphosphine complex 3b exhibits rapid, reversible phosphine ligand exchange at room temperature on the NMR time scale. Photolytic replacement of carbon monoxide with either phenylacetylene or 2-butyne occurs efficiently to form [W(eta (2)-alkyne)(eta (2)-MeNCR)(acac) 2] (+) complexes ( 5a- d) with a variable electron donor eta (2)-alkyne paired with the eta (2)-iminoacyl ligand in the W(II) coordination sphere. PMe 3 adds to 1a or 5b to form [W(L)(eta (2)-MeNC(PMe 3)Ph)(acac) 2] (+) [L = CO ( 4), MeCCMe ( 6)] via nucleophilic attack at the iminoacyl carbon. Addition of Na[HB(OMe) 3] to 5b yields W(eta (2)-MeCCMe)(eta (2)-MeNCHPh)(acac) 2, 8, which exhibits alkyne rotation on the NMR time scale. Addition of MeOTf to 8 places a second methyl group on the nitrogen atom to form an unusual cationic eta (2)-iminium complex [W(eta (2)-MeCCMe)(eta (2)-Me 2NCHPh)(acac) 2][OTf] ( 9[OTf], OTf = SO 3CF 3). X-ray structures of 2,6-dimethylphenylisonitrile complex 2c[BAr' 4 ], tricyclohexylphosphine complex 3b[BAr' 4 ], and phenylacetylene complex 5a[BAr' 4 ] confirm replacement of CO by these ligands in the [W(L)(eta (2)-MeNCR)(acac) 2] (+) products. X-ray structures of alkyne-imine complexes 6[BAr' 4 ] and 8 show products resulting from nucleophilic addition at the iminoacyl carbon, and the X-ray structure of 9[BAr' 4 ] reflects methylation at the imine nitrogen to form a rare eta (2)-iminium ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号