首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solvent effect on the Gibbs energy of activation for rotation around the (C=O)–N bond in cyclohexyl N,N-dimethylcarbamate was investigated by dynamic NMR spectroscopy and density-functional theory at the B3LYP/6-311+G** level. The experimental barriers were about 15 kcal mol−1 with no appreciable variation when the solvent polarity was changed. A reaction field model was applied to theoretically mediate the solvent effect and the results were comparable to the experimental data. An analysis, based on the Onsager solvation theory, showed that the solvent effect on rotational barriers can be understood employing the total molecular dipole moment, the difference between the dipole moments of the ground and the transition state structures, or both, as appropriate.  相似文献   

2.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

3.
Abstract— The absorption and fluorescence spectra of indole-4-carboxylic acid in various solvents have indicated that the -COOH group is more planar with respect to the indole ring in the first excited singlet state (S1) than in the ground (S0) state. Relatively large Stokes' shifts indicate that polarisability and dipole moment of the molecule are increased predominantly upon excitation. Prototropic reactions in the S0 and S1 states are the same. The -COO- and -COOH+2 groups are not coplanar in the S0, but coplanar in the S1 state. pH-dependent fluorescence spectra have revealed that both protonation and deprotonation of the -COOH group increase the basicity of the molecule upon excitation.  相似文献   

4.
Theoretical studies of the NTO unimolecular decomposition   总被引:1,自引:0,他引:1  
This work studies 39 decomposition paths among 18 intermediates and 14 transition states. Three types of intra-molecular proton migration and the direct scission of C–NO2 were regarded as the initial steps of the unimolecular decomposition of NTO. The activation energies of the radicalization C–NO2 homolysis step are 79.158, 79.781 and 80.652 kcal mol−1. The activation energies of the ionization C–NO−12 scission step are 262.488, 263.138 and 272.278 kcal mol−1. The bottle neck activation energies of the C–NO2H cleavage are 54.936, 63.257 and 71.247 kcal mol−1. Two paths have the smallest bottle neck activation energy. Both of them have two proton migration steps and one internal rotation step prior to C–NO2H cleavage. At lower temperatures, energy accumulated slowly. When the energy is high enough and reaction time is long enough for structure transformation, these two mechanisms should be the most probable decomposition paths. At high temperatures, the shortest (four steps) mechanism which goes through radicalization C–NO2 scission should be the dominant path. There are five tautomers found in this study. Four of them are intra-molecular proton migration tautomers. The other one is an internal rotational tautomer. Their energy barriers for structure transfer are lower than any of the activation energies of the decomposition reactions. It may be regarded as one explanation of the insensitive property of NTO.  相似文献   

5.
The calculations reported here assign a charge qN = −0.52 electron units to the terminal nitrogen atoms in the azide ion and a value of 141.9 kJ mole−1 to the enthalpy of formation of the gaseous azide ion, ΔHf0(N3(g)). The total lattice potential energies are found to be: Epot(NaN3) = 725.1 kJ mole−1; Epot(KN3) = 650.7 kJ mole−1 and Epot(RbN3) = 632.1 kJ mole−1.  相似文献   

6.
The interaction of CO with silica supported molybdenum atoms has been studied by means of density functional calculations and cluster models. Experimentally two bands in the IR spectra of adsorbed CO have been observed at 2170 and 1990 cm−1 with vibrational shifts of +27 and −153 cm−1, respectively, with respect to the gas-phase molecule, the peak at +27 cm−1 has been related to the presence of neutral Mo atoms anchored to two oxygen atoms of the SiO2 substrate. Possible reactive sites at the Mo/SiO2 interface have been explored as candidates for CO adsorption. Mo atoms in various formal oxidation states, from +II to +VI, have been considered. Both molecular and cluster models of the Mo/SiO2 interface have been employed. The analysis shows that a neutral Mo(II) atom, proposed to be responsible for the blue-shift of ν(CO), is not likely to be the origin of the IR band at 2170 cm−1. Only Mo atoms in high oxidation states or Mo cations carrying a real positive charge can account for the positive shifts in the CO frequency.  相似文献   

7.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

8.
The potential energy, dipole, quadrupole and octopole moments and dipole polarisabilities have been calculated at CASSCF level for the ground X1Σ+ state of the PO+ molecular ion as a function of internuclear distance. Most of the electrical properties have not previously been calculated and show rapid variations around 5 a.u. due to a perturbation. The calculated vibrational frequency of 1410.4 cm−1 and the integrated IR absorption intensity of 984 cm2 mol−1 should lead towards the first observation of the vibrational spectrum.  相似文献   

9.
In this article we report a femtosecond time-resolved transient absorption study of a neutral organic mixed-valence (MV) compound with the aim to gain insight into its charge-transfer dynamics upon optical excitation. The back-electron transfer was investigated in five different solvents, toluene, dibutyl ether, methyl-tert-butyl ether (MTBE), benzonitrile and n-hexane. In the pump step, the molecule was excited at 760 nm and 850 nm into the intervalence charge-transfer band. The resulting transients can be described by two time constant. We assign one time constant to the rearrangement of solvent molecules in the charge-transfer state and the second time constant to back-electron transfer to the electronic ground state. Back-electron transfer rates range from 1.5 × 1012 s−1 in benzonitrile through 8.3 × 1011 s−1 in MTBE, around 1.6 × 1011 s−1 in dibutylether and toluene and to 3.8 × 109 s−1 in n-hexane.  相似文献   

10.
The Raman spectra of F3PBH3 and F3PBD3 have been recorded (2500-10 cm−1) of the liquids (−80°C) and solids (−196°C) as well as the infrared spectra (4000-33 cm−1) of the solids. In the spectrum of the solid state many of the 10B and 11B fundamentals were clearly defined and it was also possible to assign the BH3 torsional frequency from the infrared and Raman spectra of the solids. A complete vibrational assignment is proposed and a normal coordinate calculation carried out. The force constant of 2.46 mdyn Å−1 for the P-B stretching mode is consistent with the short P-B bond; this constant is compared to the similar quantity for several other phosphorus-boron compounds. All of the E modes for the “free” molecule are shown to be split by the site symmetry which indicates that the molecules occupy Cs or C1 sites. The large number of observed lattice modes is consistent with two or more molecules per primitive cell. The torsional frequency was observed at 224 cm−1 and 167 cm−1 in hydrogen and deuterium compounds in the solid, respectively. These frequencies gave a periodic barrier of 4.15 kcal mole−1 for F3PBH3 and 4.31 kcal mole−1 for F3PBD3. CNDO/2 calculations have been carried out for F3PBH3 and the isoelectronic F3SiCH3 molecule in both the staggered and eclipsed forms and the dipole and barrier origins are discussed.  相似文献   

11.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature.  相似文献   

12.
Hydrolysis of carbonyl dichloride or phosgene (Cl2CO) in gas phase has been investigated at Hartree–Fock, density functional and ab initio levels of theory. The effects of basis sets on the energetics of the reaction have also been explored. Calculations reveal that initially carbonyl dichloride and water form a weak complex and this complex can react further in two ways. In Path 1, water adds on to carbonyl dichloride across carbonyl bond in a concerted fashion to give dichloromethane diol, and this diol decomposes to form chloro formic acid by syn-1,2-elimination of HCl and forms CO2 and HCl as final products. Path 2 is the concerted addition of water across carbon chlorine bond and elimination of HCl in a single step leading to the formation of chloro formic acid directly. This second path that skips the formation of dichloromethane diol is observed to be very low lying and hence is kinetically favored. Addition of second water molecule to the reacting system is found to catalyze the reaction by stabilizing the complex, intermediate and transition states and reduces the activation energy to 24.6 kcal mol−1 compared to 29.9 kcal mol−1 for a single water molecule.  相似文献   

13.
We present a molecular dynamics study of the solvation properties of large spherical ions S+ and S of same size, in water, chloroform and acetonitrile solutions, and at a water–chloroform interface. According to the “extrathermodynamic” TATB hypothesis, such ions have identical free energies of transfer from water to any solvent. We find that this is not the case, because S interacts better than S+ with water (by about 20 kcal mol−1), while S+ is better solvated by acetonitrile (by about 2 kcal mol−1) and chloroform (about 8 kcal mol−1) solvents. The importance of “long-range” electrostatic interactions on the charge discrimination by solvent is demonstrated by the comparison of standard vs corrected methods to calculate: (i) the electrostatic potential at the centre of the solute; (ii) the interaction energies between the ions and the solvents; and (iii) the free energies of charging the neutral sphere S0 to S+ and S, respectively. These conclusions are obtained with several solvent models and simulation conditions. The question of ion pairing for the S+S, S+Cl and SNa+ pairs is also examined in the three solvents. Finally, simulations at a liquid–liquid water–chloroform interface represented explicitly, show that S+ and S are highly surface active, although they do not possess, like classical surfactants, an amphiphilic topology. Adsorption at the interface is found with different methodologies and at different ion concentrations. These results are important in the context of the “TATB hypothesis”, and for our understanding of solvation of large hydrophobic ions in pure liquids or in heterogeneous liquid environments.  相似文献   

14.
Fluorescene and fluorescence excitation spectra as well as fluorescence decay functions of solid solutions of up to 7×10−2 M perylene in PMMA have been measured upon variable site-selective dopant excitation. Fluorescence spectra are the analogue to the Y emission of the -modification of crystalline perylene. Fluorescence decay is non-exponential, the average decay time being correlated with the appearance of the 1150 cm−1 b2u mode in the emission spectrum. It is concluded that the polymer matrix generates a distribution of ground state pair conformations. After excitation pairs relax to structures with statistically varying coordinates leading to a distribution of decay times. With increasing pair excitation energy the Stokes shift increases indicating greater stability of the excited pair. Spectral as well as decay time analysis suggest that in the parallel pair structure radiative decay is promoted by the non-totally symmetric 1150 cm−1 molecular vibration.  相似文献   

15.
Ab initio calculations were performed for special points of the minimal energy pathways (MEP) of the nucleophilic addition reactions of the isolated H anion, LiH molecule and Li+/H ion pair to acetylene (A) and methylacetylene (MA) molecules, proceeding in accordance (M) and against (aM) the Markovnikov's rule. All structural parameters were optimized using the restricted Hartree–Fock (RHF) method. For the addition of H, the 6-31++G* basis set was used and for the reactions of LiH and Li+/H the 6-31G* basis set with the subsequent recalculation of single point energies, taking into account of electron correlation energy by means of the second-order Möller–Plesset perturbation theory at the MP2/6-31++G** level. The results of calculations demonstrate, that the energy characteristics of both M- and aM-additions with H do not differ sufficiently (0.1–1.2 kcal/mol for the activation energies (ΔEa) and the reaction heats (ΔQ)). The substitution of the H atom by the CH3 group in A molecule results in practically the same values of ΔQ and ΔEa. On the contrary, for the LiH molecule and Li+/H ionic pair, the M-addition is favorable (charge control). It is found that the presence of electrophile decreases the activation energy by 3–5 kcal/mol as compared with the addition of the isolated hydride ion H.  相似文献   

16.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

17.
Vibrational spectra of the lowest energy triplet states of thymine and its 2′-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and 1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4O carbonyl exhibits substantial single-bond character, explaining the large (70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor.  相似文献   

18.
FT-IR and FT-Raman spectra of the biomolecule 5-aminouracil were recorded in the regions 400–4000 cm−1 and 10–3500 cm−1, respectively. The observed vibrational wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. Density functional calculations were performed to support wavenumber assignments of the observed bands. A comparison with the molecule of uracil was made, and specific scale factors were employed in the predicted wavenumbers of 5-aminouracil. With the purpose of study the important molecule 5-aminouracil, its equilibrium geometry and harmonic wavenumbers were calculated for the first time by the B3LYP DFT method. The vibrational wavenumbers were compared with IR and Raman experimental data. Also good reproduction of the experimental wavenumbers is obtained and the % error is very small. All the tautomeric forms of 5-aminouracil were determined and optimized. The dimer forms were also simulated. The energy, atomic charges and dipole moments were discussed and several general conclusions were underlined.  相似文献   

19.
The novel cycloalkane pyramidane (tetracyclo[2.1.0.01,302,5]pentane, [3.3.3.3]fenestrane), C5H4, with a pyramidal carbon atom, was investigated further. Calculations at the B3LYP/6-31G* and G2(MP2) levels supported earlier conclusions from QCISD(T)/6-31G*//MP2(FC)/6-31G* energies that pyramidane lies in a deep well (ca. 100 kJ mol−1) on the potential energy surface. The pyramidal carbon is predicted to have a lone electron pair, and calculations (CBS-4) indicate that pyramidane is remarkably basic for a saturated hydrocarbon (proton affinity 976, cf. 922 and 915 kJ mol−1 for pyridine and aniline, respectively). The calculated (CBS-4) acidity is similar to that of tetrahedrane and toluene; the pyramidyl group (C5H3) attached to an atom bearing a lone electron pair appears to be much more strongly electron-withdrawing than the phenyl group. The infrared CO stretching frequency and C–CHO rotational barriers of pyramCHO, PhCHO and cyclopropylCHO indicate that the pyramidyl group is comparable to phenyl and cyclopropyl in its ability to donate electrons to an electron-deficient carbon. The adiabatic ionization energy of pyramidane is ca. 9.0 eV (MP2/6-31G*, energy differences and Koopmans’ theorem), similar to that of typical cycloalkanes. The heat of formation of pyramidane was calculated by the G2(MP2) method and isodesmic reactions to be to be 585 kJ mol−1 and the strain energy was estimated to be 622 kJ mol−1; pyramidane is 122 kJ mol−1 more strained than its isomer spiropentadiene. Application of the NMR NICS method, varying the position of the probe nucleus, gave no evidence for benzenoid-type aromaticity in the potentially cyclobutadiene cation-like base of pyramidane.  相似文献   

20.
Pradyot K. Chowdhury   《Chemical physics》2006,320(2-3):133-139
The vibrational frequencies of the N–H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm−1 are assigned to the symmetric and antisymmetric N–H stretching vibrations of the 1:2 aniline–THF complex, respectively. The red-shifts of the N–H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF)2 structure in which both aniline N–H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol−1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N–H bonds in the NH2 group increased to 112.5° in the aniline–(THF)2 complex from that of 109.8° in the aniline. The electronic 0–0 band origin for the S1 ← S0 transition is observed at 32,900 cm−1 in the aniline–(THF)2 complex, giving a red-shift of 1129 cm−1 from that of the aniline molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号