首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a phenomenological theoretical model to treat the trapping of carriers into quantum wells of semiconductor laser structures. We consider explicitely the transport within the barrier layers by solving the continuity equation with the appropriate boundary conditions taking into account surface recombination, radiative and nonradiative recombination in the barrier layers and trapping of carriers into the quantum wells. The experimental findings for the trapping dynamics in GaAs/AlGaAs quantum well structures can be consistently interpreted by the model calculations.  相似文献   

2.
We look at some one-dimensional semi-infinite superlattices with an underlying Hamiltonian that is of the nearest neighbour, tight binding type. A real space rescaling procedure which is exact in one dimension is applied to obtain the location of the subbands. It has been found that these subbands never overlap in 1D, and we interpret this as a band repulsion effect. Relevance in the case of a disordered system where this band repulsion crosses over to the well-known level repulsion is discussed. Then with a proper matching at the boundary we solve for the sets of denumerably infinite number of decaying solutions (the surface states) in the gaps. These types of states have been proposed quite some time ago. We look at detail theirexact analytical solutions in 1D and find that their decay lengths near the band edges diverge as |E–E b|–v, wherev=1/2 andE b is the nearest band edge. The decay lengths and their divergence exponent match extremely well with those obtained from transfer matrix method. Some recent experiments on quantum well structures seem to have observed such states.  相似文献   

3.
The lowest excitations of a repulsively interacting few particle system are investigated within correlated “pocket state” basis functions. For long range interaction and non-isotropic confining potentials the method becomes exact, in the limit of large mean inter-particle distancesr s. The multiplet structure of the many-electron energy levels is explained and the ratios δ between the lowest excitation energies, which are related to the electron spin, are determined quantitatively using group theoretical means. The δ are independent of the detailed form of the inter-particle repulsion and of sufficiently larger s. The obtained δ-values are confirmed by available numerical data. The method is applied to 1D and 2D quantum dots.  相似文献   

4.
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this potential. We then study the resulting position and (well-defined) momentum operators. We also consider their mean values in coherent states and their quantum dispersions.  相似文献   

5.
We study the resonant magnetopolaron effects in parabolic quantum wells in a tilted magnetic field. The renormalization of the first excited level, which is resonant with the ground state level plus one longitudinal-optical phonon is calculated at the resonance using an improved resonance approximation to be E= where is the polaron coupling constant. The exponent and the factor are calculated in dependence on the tilt angle of the magnetic field and the confinement energy.  相似文献   

6.
In this article, we formulate the study of the unitary time evolution of systems consisting of an infinite number of uncoupled time-dependent harmonic oscillators in mathematically rigorous terms. We base this analysis on the theory of a single one-dimensional time-dependent oscillator, for which we first summarize some basic results concerning the unitary implementability of the dynamics. This is done by employing techniques different from those used so far to derive the Feynman propagator. In particular, we calculate the transition amplitudes for the usual harmonic oscillator eigenstates and define suitable semiclassical states for some physically relevant models. We then explore the possible extension of this study to infinite dimensional dynamical systems. Specifically, we construct Schrödinger functional representations in terms of appropriate probability spaces, analyze the unitarity of the time evolution, and probe the existence of semiclassical states for a wide range of physical systems, particularly, the well-known Minkowskian free scalar fields and Gowdy cosmological models.  相似文献   

7.
The binding energies of a hydrogenic donor in a GaAs spherical quantum dot in the Ga1−xAlxAs matrix are presented assuming parabolic confinement. Effects of hydrostatic pressure and electric field are discussed on the results obtained using a variational method. Effects of the spatial variation of the dielectric screening and the effective mass mismatch are also investigated. Our results show that (i) the ionization energy decreases with dot size, with the screening function giving uniformly larger values for dots which are less than about 25 nm, (ii) the hydrostatic pressure increases the donor ionization energy such that the variation is larger for a smaller dot, and (iii) the ionization energy decreases in an electric field. All the calculations have been carried out with finite barriers and good agreement is obtained with the results available in the literature in limiting cases.  相似文献   

8.
Tunneling in a piecewise harmonic potential coupled to a harmonic oscillator is considered by means of the path integral technique. The reduced propagator for the tunneling particle is calculated explicitly and the tunneling splitting is found in semiclassical approximation. The result holds for arbitrary values of the parameters of the system. From this the adiabatic and antiadiabatic approximations are obtained as particular cases and compared with the results obtained differently. The limit of a strong interaction is also considered. It is found that for strong interaction or equivalently for the harmonic frequency tending to zero the preexponential factor in the tunneling splitting tends to zero which results in a suppression of tunneling. Implications of this result for tunneling in a more general potential are discussed.  相似文献   

9.
The potential induced by the electron-optical-phonon interaction in a quantum well (QW) is investigated by means of the perturbation theory. We consider the interactions of an electron with both bulklike confined longitudinal optical (LO) phonons and four branches of interface optical (IO) phonons. The spatial distributionV i(z) of the induced potential for QW structures with different heterolayer compositions and different well widths is calculated in detail. The numerical results show that the heterolayer composition of the QW plays an important role in determining the shape ofV i(z) and that the existence of IO-phonons is important to the electronic states in QWs.  相似文献   

10.
11.
The single capture total cross section (TCS) for scattering of high energy protons from some noble gases and small molecules is calculated by using the full plane wave first Born approximation (PWFBA). It is shown that even deep subshells have a noticeable contribution to the resulting TCS. We also find that the exchange mechanism which can also be incorporated in the PWFBA gives rise to a small effect on TCS for all the investigated targets.  相似文献   

12.
We study the low-temperature photoluminescence (PL) of strained InAs single quantum wells (SQWs) embedded in a Ga0.47In0.53As matrix grown on InP substrates by modified solid-source molecular beam epitaxy. The spectra are interpreted in the frame of a two-level rate equation model describing the carrier dynamics in the structures. We show that band-filling occurs in these QWs for an excitation power as low as 30 Wcm–2. Moreover, the spectra reveal that the band-filling results from the rapid population of the hole subband. This observation highlights the low in-plane heavy-hole mass in the compressively strained film. Our results therefore demonstrate the high potential of InAs/Ga0.47In0.53As QW nonlinear optical devices operating in the mid-IR wavelength range.  相似文献   

13.
We present the numerical results of the electronic conductanceG of a quantum wire with a multichannel point contact structure in a perpendicular external magnetic fieldH at zero temperature, based on the rigorous quantum mechanics of a two-dimensional noninteracting electron gas. Computational results show the approximate quantization of the electronic conductance. WheH is weak,Ginteger multiples of 2e 2/h; and whenH is trong, Ginteger multiples of 2ne 2/h, wheren is the number of channels in the point contact structure of the quantum wire. Quantum leaps take place whenH±2m * E F /[e(2j+1)], wherej is either zero or a positive integer small enough for the external magnetic fieldH to be strong, andm * is the effective mass of an electron in the device. To our knowledge, no report on this quantization of electronic conductance has been published. Oscillations are manifest in theGH curves for comparatively narrow channels because of the quantum size effect.  相似文献   

14.
The ground state and a few excited state energies of a hydrogenic donor in a spherical quantum dot (GaAs in a GaAlAs matrix) are computed. While the 1s and the 2s-state energies behave normally for dots of all radii, the 2p0 and 2p± states are unbound for most of the radii of interest. It is predicted that a semiconductor quantum dot with a hydrogenic donor will exhibit photoconductivity for a low threshold wavelength ∼12 μm. The spin-orbit coupling gives a contribution of the order of 10−5 meV for both 2p0 and 2p± states.  相似文献   

15.
The dynamics of one electron interacting with a linear chain of heavy atoms bears a strong similarity with the propagation of a classical wave in a periodic non linear medium. Arnold resonances of the dynamical system play a central role. Some of the quantum states associated with these resonances are delocalized and contribute to phenomena such as Peierls dimerization while other ones are localized and are similar to the gap solitons of the classical wave theory, we call them Braggons. Complex Braggons containing several electrons inside the same localized profile are also described.  相似文献   

16.
The energy levels of an off-center hydrogenic donor confined by a spherical Gaussian potential have been calculated as a function of the potential radius for different donor position by exact diagonalization method. The results have clearly demonstrated the so-called quantum size effect. The binding energy is dependent on the dot radius R, the impurity ion distance D, and the confining potential depth V0.  相似文献   

17.
Jean Richert 《Physics letters. A》2008,372(32):5352-5355
The nature of the low energy spectrum of frustrated quantum spin systems is investigated by means of a topological test introduced by Hatsugai [Y. Hatsugai, J. Phys. Soc. Jpn. 73 (2004) 2604; Y. Hatsugai, J. Phys. Soc. Jpn. 74 (2005) 1374; Y. Hatsugai, J. Phys. Soc. Jpn. 75 (2006) 123601] which enables to infer the possible existence or absence of a gap between the ground state and excited states of these systems. The test relies on the determination of an order parameter which is a Berry phase. The structure of the spectra of even and odd-legged systems in 2d and 3d is analysed. Results are confronted with previous work.  相似文献   

18.
Size effects in the resonant nonlinear optical response of amorphous Si/SiO2 multiple quantum wells (MQW) are studied by second-harmonic generation (SHG) spectroscopy in a spectral interval of second-harmonic photon energies from 2.5 to 3.4 eV. The sensitivity of SHG spectroscopy to thickness-dependent electronic structure (sub-band energy position and density of states line shape) of MQW is demonstrated. A monotonic red shift of central energies of SHG resonances by 120 m eV upon increase of the well thickness from 2.5 to 10 ? is observed. This is interpreted as a size dependence of the position of singularities in the combined density of states for a 2D gas of electrons moving in an effective potential well. It is shown that, for agreement with experiment, the simplest (rectangular) shape of the well should be modified in order to take into account the lattice-potential distortion at the interfaces. Received: 16 October 2001 / Revised version: 16 April 2002 / Published online: 6 June 2002  相似文献   

19.
Electronic parameters of a two-dimensional electron gas (2DEG) in modulation-doped highly strained InxGa1−xAs/InyAl1−yAs coupled double quantum wells were investigated by performing Shubnikov-de Haas (S-dH), Van der Pauw Hall-effect, and cyclotron resonance measurements. The S-dH measurements and the fast Fourier transformation results for the S-dH at 1.5 K indicated the electron occupation of two subbands in the quantum well. The electron effective masses of the 2DEG were determined from the cyclotron resonance measurements, and satisfied qualitatively the nonparabolicity effects in the quantum wells. The electronic subband structures were calculated by using a self-consistent method.  相似文献   

20.
Phonon-assisted Auger recombination (AR) is shown to be an important loss mechanism in a quantum well semiconductor in addition to the direct AR. Theoretical investigations demonstrate that it is of the same order of magnitude and has the same temperature dependence as in bulk material, just as direct AR, provided that the material parameters and the carrier concentrations are the same as in the bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号