首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Summary.  Several compounds may exist in LnCl3MCl mixtures. Those corresponding to the M 2 LnCl5 and MLn 2Cl7 stoichiometries are formed in a few systems only, with diverse stability strongly dependent on both the corresponding lanthanide and alkali metal. On the other hand, M 3 LnCl6 that occur in most systems have a far larger stability range and melt congruently. These latter compounds were investigated in the present work by differential scanning calorimetry and electrical conductivity measurements. The thermodynamic and transport properties were correlated to structural features and related to the mechanism of compound formation. Corresponding author. E-mail: Marcelle.Gaune-Escard@polytech.univ-mrs.fr Received October 2, 2002; accepted November 6, 2002 Published online April 24, 2003 RID="a" ID="a" This paper is dedicated to Professor H. Gamsj?ger on the occasion of his birthday  相似文献   

2.
The new phases Ln1/3 Zr2(PO4)3 (Ln = Rare Earth) crystallize with the Nasicon-type structure. The rare earth is located in the usually labeled M1 site with rather ionic Ln -O bonds. The ceramics resulting from the decomposition of these phosphates have been characterized in the case of lanthanum and europium. They exhibit a very low thermal expansion between room temperature and 1340°C.  相似文献   

3.
We have investigated, using X-ray powder diffraction data, the crystal structures of some fluorite derivatives with the formula Ln3MO7 (Ln=lanthanide or Y and M=Sb and Ta). In these compounds ordering of Ln and M occurs, leading to a parent structure in Cmmm. Tilting of the MO6 octahedra causes doubling of one of the cubic axes, leading to a number of non-isomorphic subgroups, e.g. Cmcm, Ccmm and Cccm. We have identified an alternative space group Ccmm instead of C2221 for those compounds containing a medium sized lanthanide or Y and M being Sb or Ta. Interestingly this is an alternative setting for the space group of the structure obtained when Ln is large (Cmcm). However, there tilting of the octahedra is around the a-axis of the parent structure, rather than around the b-axis as it is found in the compounds which we are reporting on here.In one compound, Nd3TaO7, both tilts occur. The phase transition between the two possible structures is a slow and difficult process above 80 K, allowing both phases to coexist.  相似文献   

4.
Synthesis, structures, and magnetic properties of ternary rare earth oxides ALnO2 (A=Cu or Ag; Ln=rare earths) have been investigated. CuLnO2 (Ln=La, Pr, Nd, Sm, Eu) were synthesized by the direct solid state reaction of Cu2O and Ln2O3, and AgLnO2 (Ln=Tm, Yb, Lu) were obtained by the cation-exchange reaction of NaLnO2 and AgNO3 in a KNO3 flux. These compounds crystallized in the delafossite-type structure with the rhombohedral 3R type (space group: R-3m). Magnetic susceptibility measurements showed that these compounds are paramagnetic down to 1.8 K. Specific heat measurements down to 0.4 K indicated that CuNdO2 ordered antiferromagnetically at 0.8 K.  相似文献   

5.
Single crystals of the new series Ln(OH)CrO4 (Ln = Y, Dy---Lu) have been obtained by hydrothermal procedures. The structure of Er(OH)CrO4 has been determined by single-crystal X-ray techniques. The compound has monoclinic symmetry, space group P21/n, Z = 8, with a = 8.106(3), B = 11.324(2), C = 8.251(1) Å, β = 94.14(2)° and V = 755.4(3) Å3. Final R values were R = 0.034, Rw = 0.049, for 2207 observed reflections. X-ray powder data show that all compounds of the title series are isomorphous. The coordination polyhedron of the lanthanide cations can be considered a square antiprism, with hydrogen bonds linking CrO4 and LnO8 groups. The X-ray data in this series provide evidence for the lanthanide contraction.  相似文献   

6.
Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form 1[CuTe5−3] and 1[CuTe3−2] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.  相似文献   

7.
Zircon-type compounds LnCrO4 (Ln=Nd, Sm, and Dy) were prepared. Their precise crystal structures at room temperature were determined from X-ray diffraction measurements. These compounds have a tetragonal system with space group I41/amd. Magnetic susceptibility and specific heat measurements have been performed for all the compounds in the temperature range between 1.8 and 300 K. For NdCrO4, an antiferromagnetic transition was found at 25.2 K. SmCrO4 and DyCrO4 show magnetic transitions at 15.0 and 22.8 K, respectively. In addition, structural phase transitions were observed at 58.5 and 31.2 K, respectively. For DyCrO4, the crystal structure below the transition temperature was determined by low-temperature powder X-ray diffraction measurements to be orthorhombic with space group Imma.  相似文献   

8.
A series of lanthanide penta-germanides LnGe5 (Ln=Ce, Pr, Nd and Sm) has been prepared by high-pressure (5–13 GPa) and high-temperature (500–1200 °C) reaction. CeGe5 crystallizes in an orthorhombic unit cell (S.G. Immm (71)) with a=4.000(5) Å, b=6.192(5) Å, c=9.86(1) Å, and V=244.1(5) Å3. The new germanides are isotypic with LaGe5 consisting of a Ge covalent network with tunnels where guest ions Ln3+ are situated. The network is composed of sublayers with edge-sharing Ge six-membered rings with only boat conformation. The sublayers are connected by rare eight-coordinated Ge atoms. The cell volume of the compounds systematically decreases from La to Sm compounds, except for CeGe5, owing to the lanthanide contraction. The lattice constants of CeGe5 are smaller than those of the Pr compound because it contains Ce4+ ions. CeGe5 is paramagnetic above 2 K, but does not obey the Curie–Weiss law. PrGe5 and NdGe5 are Curie–Weiss type paramagnets with Weiss temperatures of –3.3 and –18.4 K. SmGe5 shows an antiferromagnetic transition at 10.4 K.  相似文献   

9.
A comprehensive review on phase diagrams, crystal structures and thermodynamics of ternary chlorides formed in systems ACl/LnCl3 (A=Cs, Rb, K, Na; Ln=La−Gd) is presented. The review summarizes the author’s own studies, published since 1985, and original papers of other scientists. With the larger alkali metal ions compounds such as A3LnCl6, A2LnCl5 and ALn2Cl7were obtained. With sodium additional compounds NaLnCl4 and Na3Ln5Cl18 were obtained. The crystal structures are discussed with the concept of ionic radii, which determine the coordination numbers of Ln3+ and A+ cations against Cl anions. The formation enthalpies of the compounds from ACl and LnCl3 were determined by solution calorimetry. Gibbs’ free energies and entropies for these reactions were obtained by e.m.f. measurements vs. temperature. The stability of a ternary chloride in a systemACl−LnCl3 is given by the ‘free enthalpy of synproportionation’, that is, the formation of a compound from its neighbour compounds in the system. This ΔG 0 syn must be negative. A surprising result is, that the highest-melting compounds in the systems, A3LnCl6, are formed from ACl+A2LnCl5 by a loss in lattice energy. They exist as high-temperature compounds due to sufficiently high gain in entropy at temperatures whereTΔSH. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Some new quaternary compounds of the type BaLnMQ3 (Ln = rare earth or Sc; M = Cu, Ag; Q = S, Se) have been synthesized by the reaction of the constituent binary chalcogenides and elements at 1000°C. The crystal structures of two of these compounds have been determined by single-crystal X-ray diffraction techniques and are isostructural. Crystal data: BaErCuS3—space group D172hCmcm, M= 464.32, Z = 4 , a = 3.987(1), b = 13.377(3), c = 10.101(2) Å (T = 115 K), V = 538.7(4) Å3, Rw (F2) = 0.095 for 848 observations and 24 variables, R(F) = 0.037 for 840 observations having F20 > 2σ (F20); BaYAgSe—space group D172hCmcm, M = 571.0, Z = 4, a = 4.239(1), b = 14.030(2), c = 10.636(2) Å (T = 115 K), V = 632.6(2) Å3, Rw (F2) = 0.057 for 645 observations and 24 variables, R(F) = 0.023 for 595 observations having F20 > 2σ(F20). These two compounds adopt the layered KZrCuS3 structure type. The layers, which are separated by Ba2+ ions, consist of edge-sharing octahedral chains and corner-sharing tetrahedral chains. The other compounds synthesized crystallize either with this same structure or with that of β-BaLaCuSe3, a slightly distorted variation, which is isostructural with Eu2CuS3. The diffuse reflective UV-visible spectra of several of these compounds have been measured. From magnetic susceptibility measurements, both BaNdCuS3 and BaGdCuS3 show Curie-Weiss behavior, whereas BaCeCuS3 and BaCeCuSe3 show in addition temperature-independent paramagnetism.  相似文献   

11.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

12.
BaxMIV xCe2−2x (PO4)2 [MIV=Zr, Hf] monazite-like compounds were succesfully synthesized by solid state reaction for x≤0.2 (MIV=Zr) and x≤0.1 (MIV=Hf). The low miscibility of BaMIV(PO4)2 (MIV=Zr, Hf) compounds in CePO4 was explained on the basis of the monoclinic-to-trigonal phase transition that occurs at 733 K in BaZr(PO4)2 and at 798 K in BaHf(PO4)2. The hydrothermal alteration of these compounds was tested using a modified MCC-1 static leaching test in acid (1 mol·dm−3 HCl) and basic (1 mol dm−3 KOH) solutions at 373 K, 473 K and 573 K; both the experimental fluids and the reacted solid specimens were analyzed by different analytical techniques and the reaction mechanisms were elucidated. All the tested compounds are stable in 1 mol·dm−3 HCl until 573 K. The stability of the monazites in 1 mol·dm−3 KOH is a function of the temperature.  相似文献   

13.
Compounds of the system Li1+ x M x Ti2– x (PO4)3 (where M=Sc, Al, Fe, Y; x=0.3) were synthesized by a solid-state reaction and studied by X-ray diffraction. The ceramic samples were sintered and investigated by complex impedance spectroscopy in the frequency range 106–1.2×109 Hz in the temperature range 300–600 K. Two relaxation dispersions related to the fast Li+ ion transport in bulk and grain boundaries were found. The activation energies of the bulk conductivity and relaxation frequency were obtained from the slops of Arrhenius plots. The values of the activation energies of the bulk ionic conductivity and relaxation frequency were found to be very similar in all the materials investigated. That can be attributed to the fact that the temperature dependences of the bulk conductivity are caused only by the mobility of the fast Li+ ions, while the number of charge carriers remains constant with temperature. Electronic Publication  相似文献   

14.
Heterometallic chloride complexes [Mo5NbI8Cl6] n (n = 2, 3) are synthesized. The crystal structures of their salts are determined: for (Ph4P)2[Mo5NbI8Cl6] (I), triclinic crystal system, spacegroup P [`1]\bar 1, a = 10.9886(6), b = 11.4604(5), c = 13.4343(7) ?, α = 66.124(2), β = 86.892(2), γ = 86.490(2)°, Z = 1, V = 1543.35(13) ?3; and for (4-MePyH)5[Mo5NbI8Cl6]Cl2 (II), monoclinic crystal system, space group C2/m, a = 16.4937(4), b = 14.7335(3), c = 11.6534(3) ?, β = 99.8750(10)°, Z = 2, V = 2789.94(11) ? The geometric parameters of compounds I and II and the conditions for the formation of the complexes with the charges −2 and −3 are discussed.  相似文献   

15.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

16.
Recently, the ferroelectromagnet YMnO3 has been the focus of interest because it exhibits both antiferromagnetism (Néel temperature 80 K) and ferroelectricity (Curie temperature 914 K). There have been no reports of complete YMn1−xMxO3 solid solutions in which substitution of the foreign M cation preserves the hexagonal P63cm structure. In contrast there exist several homeotypic phases with the general formula, Ln1+nCunMO3+3n (n=1 (M=Ti), 2 (M=V) and 3 (M=Mo); Ln: lanthanide). Several YMn1−x(Cu3/4Mo1/4)xO3 compounds have been synthesized. The solid solution, from YMnO3 (x=0) to YCu3/4Mo1/4O3 (x=1) has been characterized by X-ray diffraction and transmission electron microscopy study. For 0<x<0.9, the compounds are found to crystallize in the non-centrosymmetric structure, space group P63cm, of YMnO3. The Mn-free end member, x=1, crystallizes in a complex multiple cell, the superstructure being associated to Cu3+/Mo6+ cationic ordering. Dilution of the Mn3+ magnetic array by the paramagnetic (Cu2+) and diamagnetic (Mo6+) cations is found to decrease the antiferromagnetic ordering temperature and it becomes undetectable for x0.5 compositions.  相似文献   

17.
Monodispersed cobalt nanoparticles (NPs) with controllable size (8–14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe2O4 (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe2O4 nanocomposites are prepared with tunable shell thickness (1–5 nm). The Co/MFe2O4 nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.  相似文献   

18.
Rare-earth ions (Eu3+, Tb3+) doped AMoO4 (A=Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO4 phase. It has been shown that the as-synthesized SrMoO4:Ln and BaMoO4:Ln samples show respective uniform peanut-like and oval morphologies with narrow size distribution. The possible growth process of the AMoO4:Ln has been investigated in detail. The EG/H2O volume ratio, reaction temperature and time have obvious effect on the morphologies and sizes of the as-synthesized products. Upon excitation by ultraviolet radiation, the AMoO4:Eu3+ phosphors show the characteristic 5D07F1–4 emission lines of Eu3+, while the AMoO4:Tb3+ phosphors exhibit the characteristic 5D47F3–6 emission lines of Tb3+. These phosphors exhibit potential applications in the fields of fluorescent lamps and light emitting diodes (LEDs).  相似文献   

19.
Summary.  Solubility isotherms in the CuBr2MBr−H2O (M + = Li+, Na+, Cs+) systems at 298.15 K were measured. The results together with other available literature data for copper chloride and bromide systems were treated by hydration analysis, and comparative discussion of ionic processes taking place in the respective saturated solutions was performed. Corresponding author. E-mail: jitka@prfdec.natur.cuni.cz Received August 6, 2002; accepted (revised) November 29, 2002 Published online April 3, 2003  相似文献   

20.
Polycrystalline samples of Ln2Sr2PtO7+δ (Ln=La, Pr, Nd) were prepared by conventional solid state synthesis. The three compounds are new examples for n=2 members of the [AnBn−1O3n] family of hexagonal perovskites containing platinum as the B-type cation. XRD Rietveld refinements show the platinates to crystallize in space group and, in the case of Pr and Nd, revealed a complete ordering of Ln/Sr on the two distinct A-type positions, while for La a partial disorder was observed. By XANES investigations at the Pt-LIII threshold the oxidation state +4 for platinum was found. Thermogravimetry revealed a small oxygen excess for Ln=La and Pr (δ=0.13 and 0.07), pointing to the presence of peroxide ions as already observed for isostructural Ru- and Ir-based compounds. UV–Vis measurements were done for the yellow lanthanum and the green neodymium compound. They revealed two optical band gaps of 2.52 and 3.05 eV, respectively. Magnetic measurements showed La2Sr2PtO7+δ to be diamagnetic as expected for Pt4+ with low-spin configuration. For Ln=Pr and Nd the observed strong paramagnetism can be explained solely by the magnetic moments of the rare earths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号