首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1°记T_n(x)=cosθ(x=cosθ)为多项式,x_k=cosθ_k=cos(2k-1/2n)π(k=1,…,n)是它的n个零点。以(1-x~2)T_n(x)的零点为节点的Lagrange插值多项式有如下形式:  相似文献   

2.
蒋元林 《计算数学》1981,3(1):72-78
设三角矩阵 {x_k~((n)},k=1,2,…,n,n=2,2,…的第n行为n次多项式T_n(x)=cos(n arc cos x)的根  相似文献   

3.
以第一类切比雪夫多项式T_(?)(x)=cosnθ,cosθ=x的根x_h=cos((2K-1)π/2n),K=1,2,…,n,n=1,2,…,为插值节点的汉密顿—弗叶多项式的表达式乃是  相似文献   

4.
关于第二类Bernstein型插值过程   总被引:1,自引:0,他引:1  
设f(x)∈c[-1,1],U_n(x)=sin(n+1)θ/sinθ(x=cosθ)为第二类多项式,x_k=cosθ_k=cos(kπ)/(n+1)(k=1,…,n)为其 n 个零点。又记 x_0=1,x_(n+1)=-1。文考虑了以{X_k}(k=0,1,…,n+1)为节点的第二类 Bernstein 型插值过程:  相似文献   

5.
设f(x)∈C_(2π)。而f(x)~sum from k=0 ( )A_k(f_1k)≡α_0/2 sum from k=1 ( )(α_kcoskx b_ksinkx)。 又设 U_n(f,x)=1/πintegral from -πto π(f(x t)u_n(t)dt,) 其中u_n(t)=1/2 sum from k=1ρ_k~(n)coskt满足条件: integral from 0 to k(|u_n(t)|dt=O(1),)ρ_k~(n)→1(n→∞;k=1,2,…,)。设m是正整数,ρ_0~(n)=1。记~mρ_k~(n)=sum form v=0 to ∞ ((-1)~(m~(-v))(m v)ρ_k v~(n) (k=0,1,…,)。)T.Nishishiraho考虑了在ρ_k~(n)=O(k>n)的情况下U_n(f,x)的饱和问题,证明了。 定理A 设{_n}是收敛于0的正数列,使得  相似文献   

6.
§1.前言 设x_k~((n))=cos((2k-1)/2n)π(k=1,2,3,…,n)是n阶多项式 T_n(x)=cos(n arccosx)的零点(n=1,2,…).以这些点为结点,区间[—1,1]上连续函数f(x)的n阶Hermite-Féjer值多项式是  相似文献   

7.
设 F∈C[-1,1],T_n(x)=cos nθ(x=cosθ)是 n 次的 Chebyshev 多项式,用 x_k=cos0_k=cos (2k-1)/(2n)π(k=1,…,n)表示 T_n(x)的零点。设ω(t)是给定的连续模,H_ω={f;ω(f,t)≤ω(t)}.本文,c(a)表示仅与 a 有关的正的常数,但每次未必表示同一值,‖·‖表示通常的上确界范数。考虑下述正线性算子  相似文献   

8.
冯恭已 《计算数学》1985,7(4):420-425
设 f(x)是以2π为周期的一个周期函数,我们知道对于[0,2π]上的2n 1个节点 θ_k=k(2π/(2n 1)),k=0,1,2,…,2n,(1)存在唯一的n次三角多项式L_n(f,θ),满足L_n(f,θ_k)=f(θ_k),k=0,1,2,…,2n。这里  相似文献   

9.
设f∈C[-1,1],ω(t)为给定的连续模,H_ω={f|ω(f,t)≤ω(t)},U_n(x)=sin(n+1)θ/sinθ(x=cosθ)是第二类Chebyshev多项式。以U_n(x)的零点x_k=cosθ_k==con(kπ)/(n+1)(k=1,2,…,n)为节点的拟Hermite-Fejer算子有如下的形式 最近,S.J.Goodenough和T.M.Mills发表了如下的定理:若f∈C[-1,1],  相似文献   

10.
设f∈C[-1,1],x_(h,n)=ciskπ/n+1,k=1,2…,n为第二类Chebyshev多项式U_n(x)=sin(n+1)θ/sinθ(x=cosθ)的零点。拟Hermite-Fejer插值多项式为O_n(f,x)=((1+x/2)f(1)+(1-x/2)f(-1))(U_n(x)/n+1)~n+  相似文献   

11.
具有Jacobi多项式零点的Hermite-Fejer多项式插值算子为其中x_k=cos((2k-1)π)/(2n+1)(k=1,2,…,n)是Jacobi多项式  相似文献   

12.
Let T_n(x) = 2~(-n+1) cosnθ(x =cosθ,θ∈[0,π]) be the n-th Chebyshev polynomialof the first kind, and Z_n={z_(nk): z_(nk)= cosθ_(nk)=:cos((2k-1)/2n)π, k = 1,2,…,n} be all thezeros of T_n(x). For some real numbers d_(nk)(k = 1,2,…,n), remarking  相似文献   

13.
设f(x)∈C_(2π)。本文讨论两种线性算子对f(x)的逼近,全文分两个部分。 在第一部分中,我们考虑在正卷积型三角多项式线性算子中占重要地位的Fejr-Korovkin算子K_n(f,x)=1/π integral from -x to π (f(x+t)k_n(t)dt),其中k_n(t)≡1/2+sum from k=1 to n (ρ_k~((n)) cos kt)=1/2+sum from k=1 to n (F_n(k/n+2)coskt),F_n(x)=(1-x)cosπX+1/n+2 cot π/n+2·sinπx.由于它满足Korovkin条件:所以有下述结果:设f(x)∈C_(2π),f″(x)∈C_(2π)。那么,当n→∞时,成立着  相似文献   

14.
§1.引言 设ω(t)是给定的连续模,H_ω={f;ω(f,t)≤ω(t)}。P_n~(α,β)(x)(α,β>-1)表示n阶Jacobi多项式;P_n(x)=P_n~(0,0)(x)为Legendre多项式。 定义1 (见[1,555页])设{x_κ~((n))}_(κ=1)~n(n=1,2,…)为属于区间[-1,1]的节点系。  相似文献   

15.
Let Z_n={z_(kn)=cosθ_(kn):θ_(kn)=(2k-1)/(2n)π,k=1,2…,n}be the zeros of T_n(x)=cosnθ(x=cosθ,θ∈[0,π]).For 0≤ε≤1,let α_n=:α_n(ε)=:cos(1-ε)/(2n)π,β_n=:β_n(ε)=:cos(2n-1+ε)/(2n)π=-α_n,X_n~(1)=(Z_n-{z_(1z)})∪{α_n},X_n~(2)=(Zn-{z_(nn)})∪{β_n},X_n~(3)=(Z_n-{z_(1n),z_(nn)})∪{α_n,β_n},Y_n~(1)=Z_n∪{α_n},Y_n~(2)=Z_n∪{β_n},Y_n~(3)=Z_n∪{α_nβ_n}.  相似文献   

16.
20 2 设 xi >0 ,i =1,2 ,… ,n,n≥ 2 ,∑ni= 1xi =1,记 Ek(x) =Ek(x1 ,x2 ,… ,xn) =∑1≤ i1 <… 0 )时 ,有Ek(1x1 - m,… ,1xn - m)≥ Ckn(n - m) k.(续铁权 .2 0 0 1,1)2 0 3 设 Ai >0 ,λk>0  (i =1,2 ,… ,n;k = 1,2 ,… ,n) ,∑ni=1Ai ≤π,n∈ N.(1)若 0≤λ≤ 1,有C2n(1-λ21 λ2 ) 2 (λπ) 2 ≤ (n - 1 cosλπ) .∑nk= 1cos2 λAk - cosλπ(∑ni=1cosλAi) 2 ≤ C2n(λπ) 2 ,等号同时成立当且仅当λ=0 .(2 )若 0≤λ≤ 1,有4λ2 C2ncos2 λ2 π≤ (n - 1 cosλ…  相似文献   

17.
对于常系数线性微分方程组:dx/dt=Ax(A是n阶实常数矩阵)通过特征根λ和对应的特征行向量K:K~T(A-λE)=0将微分方程组化为线性方程组:1°当有n个互异的特征根λ_1,λ_2,…,λ_n,对应的线性无关的特征行向量为K_1,K_2,…,K_n,若记K_i=(k_1,k_2,…,k_n)(i=1,2,…,n),则有方程组:(n∑i=1 k_ix_i)′=λ_j(n∑i=1 k_ix_I)(j=1,2,…,n);2°当有不同的特征根λ_1,λ_2,…,λ_m其重数分别为n_1,n_2,…,n_m,n_1+n_2+…+n_m=n,对应的线性无关的特征行向量为K_i=(k_1,K_2,…,k_n)(i=1,2,…,m),则有方程组:(n∑i=1 k_rx_r)′=λ_k(n∑i=1 k_rx_r)((A-λ_jE)x_(n_i)=0;i=1),(n∑i=1 k_rx_r)′=λ_j(n∑i=1k_rx_r)+c_(n_i)e~(λ_jt)((A-λ_kE)x_(i-1)=Ex_i,i=2,…,n_i).  相似文献   

18.
设Ω=[-πxπ,-πyπ],C(Ω)表示关于x,y均以2π为周期的连续函数空间.若f(x,y)∈C(Ω),取结点组为(xk,yl)=(2k+2n 1)π,(2l 2+m 1)πk=0,1,2,…,2n,l=0,1,2,…,2m,则我们获得一个二元三角插值多项式Cn,m(f;x,y)=M1N∑k=2n0∑l=2m0f(xk,yl).1+2∑nα=1cosα(x-xk)+2∑mβ=1cosβ(y-yl)+4∑nα=1∑mβ=1cosα(x-xk)cosβ(y-yl)其中M=2m+1,N=2n+1.为改进其收敛性,本文构造一个新的因子ρα,β,使得带有该因子ρα,β的二元三角插值多项式Ln,m(f;x,y)可以在全平面上一致地收敛到每个连续的f(x,y),且具有最佳逼近阶.  相似文献   

19.
1.设 cos(n arc cos x),|x|≤1, T_n(x)= ch(n arc ch x),|x|≥1,i)若p_n(x)是任一首项系数为1的n次多项式,则 max |p_n(x)|≥1/2~(n-1);  相似文献   

20.
在正实轴上考虑函数系,其中Reμ_n>0,n=1,2,…,且用S_k表示μ_k在{μ_1,μ_2,…,μ_k}中出现的次数,P_k表示μ_k在序列{U_n}_1~∞中出现的次数,已知 Mntz-Szasz定理:要使函数系在空间L~2[0, ∞)中完备,即对任意f(x)∈L~2《0, ∞),对任给ε>0,存在P_n(x)=sum from k=1 to n(c_ke~(-μ_ke~x)x~(S_(k-1)))使得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号