首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selective formation of amorphous, nematic (N), and beta phases in poly(9,9-di-n-octyl-2,7-fluorene) (PFO) films was achieved via judicious choice of process parameters. Phase structure and film morphology were carefully examined by means of X-ray diffraction as well as electron microscopy. "Amorphous" thin films were obtained by quick evaporation of solvent. Slow solvent removal during film formation or extended treatment of the amorphous film with solvent vapor resulted in predominantly the beta phase, which corresponds to a frozen (due to decreased segmental mobility upon solvent removal) and intrinsically metastable state of transformation midway between a solvent-induced clathrate phase and the equilibrium crystalline order in the undiluted state. The frozen transformation process is reactivated upon an increase in temperature beyond 100 degrees C. Compared to the amorphous film, extended backbone conjugation in the beta phase is evidenced from the emergence of a characteristic absorption peak around 430 nm near the absorption edge. For films of frozen nematic order (obtained by quenching from the nematic state), the conjugation length is also greater than the amorphous films as revealed by an absorption shoulder around 420 nm. Well-behaved single-chromophore emission with single-mode phonon coupling was observed for the beta phase; in the case of nematic films, dual-mode phonon coupling must exist if single-chromophore emission is assumed. In comparison, the emission spectrum of the amorphous film of generally shorter conjugation lengths exhibited mixed characteristics of nematic and beta phases, implying the presence of minor populations of extended conjugation similar to those in nematic and beta phases, which are of biased weightings in the emission spectra. All these films consist of nanograins (ca. 10 nm in size) of collapsed chains; the films are therefore inherently inhomogeneous in this length scale. In combination with previous observations on the crystalline (alpha and alpha') forms, the phase behavior of PFO is then generally summarized in terms of relative thermodynamic stability.  相似文献   

2.
We have investigated the molecular orientation of glassy poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) layers formed on photo-aligned polyimide films with different in-plane anisotropy. The polyimide contains azobenzene in the backbone structure (Azo-PI), allowing us to control the in-plane anisotropy of the film by varying linearly polarized light (LP-L) exposure. The glassy PFO layers (30 nm thick) were obtained by annealing the samples at the liquid crystalline phase of PFO and then quenching them to room temperature. The degree of alignment of PFO was assessed by the polarization ratio of photoluminescence (PL). The PL polarization ratio increased rapidly with the LP-L exposure, and it reached 10 at 2.8 J/cm2. Beyond this LP-L exposure, it became almost constant around 10.4. This PL polarization ratio was much higher than the absorption dichroic ratio of the underlying Azo-PI film. This result suggests that the degree of alignment of PFO is determined by its liquid crystalline nature. The saturation dependence of the degree of alignment is very useful for fabricating alignment patterns by a simple photo-mask exposure method. We have succeeded in fabricating 3 μm line-and-space alignment patterns of PFO.  相似文献   

3.
Vertically aligned fluorescent polymer arrays with poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) are prepared by simple drop-casting onto mesoporous alumina film. The obtained PFO arrays exhibit anisotropic photoluminescence (PL) along the orientation of the main chains.  相似文献   

4.
Circular differential transmission in thick films (1.1 mum) of poly{9,9-bis[(3S)-3,7-dimethyloctyl]-2,7-fluorene} is investigated. The vitrified liquid crystalline film obtained after annealing shows high circular differential transmission of light in the wavelength range where the polyfluorene does not absorb (lambda > 450 nm). Using a specifically designed chiroptical setup, we show that circular selective reflection of light in which the circular polarization of the light is retained after reflection, a process which is characteristic for cholesteric liquid crystalline films, makes a negligible contribution to the differential transmission. Using an integrating sphere, we show that circular differential scattering can account for the observed circular differential transmission for lambda > 450 nm.  相似文献   

5.
采用Suzuki偶合反应合成了一系列新型的咔唑、芴和2,1,3-苯并硒二唑的共聚物——聚[3,6-(N-(2-乙基己基))咔唑-2,1,3-苯并硒二唑-9,9-双(N,N-二甲基胺丙基)芴](PCzN-BSeD)及其相应的聚电解质衍生物——聚[3,6-(N-(2-乙基己基))咔唑-2,1,3-苯并硒二唑-9,9-(双(3′-(N,N-二甲基)-N-乙基铵)丙基)芴]二溴(PCzNBr-BSeD).在聚咔唑和芴中引入不同比例的2,1,3-苯并硒二唑(BSeD)单元,引起了由咔唑和芴链段向窄带隙苯并硒二唑(BSeD)单元有效的能量转移.通过对聚合物电致发光性能的研究,发现用聚(3,4-亚乙基二氧基噻吩)(PEDOT)或聚(3,4-亚乙基二氧基噻吩)/聚乙烯咔唑(PEDOT/PVK)作为空穴传输层时,器件的性能相差不大,表明咔唑的引入较明显的改善了聚合物的空穴注入性能.而且几乎所有的聚合物用高功函数铝作阴极的器件和用钡/铝作阴极的器件具有相近的发光性能,表明这类聚合物具有良好的电子注入性能.  相似文献   

6.
Amorphous poly(9,9-di-n-octyl-2,7-fluorene)(PFO)thin films were characterized in situ via thermal an- nealing based on grazing incidence X-ray diffraction(GIXRD)profiles,UV-visible absorption spectrophotometry,and Fourier transform infrared spectroscopy(FTIR).The results of GIXRD indicated that the amorphous phase transformed into a crystalline phase when the annealing temperature was higher than 80 ℃.Different outcomes were elicited for the intensities and d-spacings of the diffraction peaks below and above 80 ℃,which were attributed to the formation of the κ-phase.The mechanism of phase transition was revealed by in situ UV-visible absorption and FTIR spectra,whereby the rearrangement of the side chains was dominant and the movement of the main chains was minimal,even when the annealing temperature was lower than 80 ℃.In contrast,the rearrangement of the main chains was dominant when the temperature was higher than 80 ℃.  相似文献   

7.
The UV–Vis absorption spectra and the luminescence properties of poly(N-octyl-2,7-carbazole) (POC) and poly(N-octyl-2,7-carbazole-alt-9,9-dioctyl-2,7-fluorene) PCF have been investigated in solution and in the solid state (thin films). No aggregate and/or excimer formation has been detected in these polymeric systems. From time-resolved fluorescence measurements in solution and in the solid state, the fluorescence efficiencies of the thin films have been estimated. It is found that the fluorescence efficiencies of these polycarbazoles in the solid state are quenched, as compared to those measured in fluid solutions, but remain relatively high (φF0.40), making them promising materials for electroluminescent devices.  相似文献   

8.
Contact resistance at the interface between metal electrodes and semiconductors can significantly limit the performance of organic field-effect transistors,leading to a distinct voltage drop at the interface.Here,we demonstrate enhanced performance of n-channel field-effect transistors based on solution-grown C_(60) single-crystalline ribbons by introducing an interlayer of a conjugated polyelectrolyte(CPE) composed of poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylamnionium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide(PFN~+Br~-).The PFN~+Br~-interlayer greatly improves the charge injection.Consequently,the electron mobility is promoted up to 5.60 cm~2V~(-1) s~(-1) and the threshold voltage decreased dramatically with the minimum of4.90 V.  相似文献   

9.
Two alternating copolymers, poly[(2,5‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy25T, and poly[(2,6‐di(2‐thienyl)‐pyridine‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)], PFO‐TPy26T, were synthesized by the Pd‐catalyzed Suzuki polymerization method. The pyridine units are present as trimeric monomers in these copolymers and have different connectivities to their two neighboring thiophenes, para‐ and meta‐linkages. We investigated the variations in the optical and electrochemical properties of the copolymers that arise from these different connectivities. The two polymers exhibit 5% weight loss above 410 °C and high glass transition temperatures (Tg: 113 °C for PFO‐TPy25T, 142 °C for PFO‐TPy26T). The UV–vis absorption maximum peaks of PFO‐TPy25T and PFO‐TPy26T in the solid state were found to be 449 and 398 nm respectively, with photoluminescence maximum peaks in the solid state of 573 and 490 nm respectively. Using cyclic voltammetry, we determined their energy band gaps: 3.08 eV for PFO‐TPy25T and 3.49 eV for PFO‐TPy25T. The cyclic voltammetry study of these polymers revealed that there are some differences. The electroluminescence (EL) properties of the copolymers were measured for the device configuration of ITO/PEDOT/polymers/Ca/Al. The device fabricated with the polymer containing 2,5‐pyridine exhibits pale orange emission, whereas the device fabricated with the polymer containing 2,6‐pyridine exhibits pale blue emission. The EL device fabricated with PFO‐TPy25T has a higher brightness (2010 cd/m2) and external quantum efficiency (0.1%) than the PFO‐TPy26T device (260 cd/m2, 0.008%), because it has a smaller energy barrier to the injection of charges from PEDOT and Ca into the HOMO and LUMO levels. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4611–4620, 2006  相似文献   

10.
This paper reports the synthesis, photophysical behavior, and use in nanosecond optical-pulse suppression of a poly(2,7-carbazole-alt-2,7-fluorene) and a poly(3,6-carbazole-alt-2,7-fluorene) in which the carbazole N-positions are linked by an alkyl chain to one of the nitrogen atoms of a perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. It was found that the PDI pendants on the polymer side chain aggregated even in dilute solution, which extended the onset of PDI absorption into the near-infrared (NIR). Transient-absorption spectra of these polymers provide evidence for efficient electron transfer following either donor or acceptor photoexcitation to form long-lived charge-separated species, which exhibit strong absorption in the NIR. The spectral overlap between the transient species and the long-wavelength absorption edge of the aggregated PDI leads to reverse saturable absorption at 680 nm that can be used for optical-pulse suppression. Additionally, at high input energies, two-photon absorption mechanisms may also contribute to the suppression. PDI-grafted polymers exhibit enhanced optical-pulse suppression compared with blends of model materials composed of unfunctionalized poly(carbazole-alt-2,7-fluorene)s and PDI small molecules.  相似文献   

11.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

12.
In this study, a series of gel electrolytes prepared from blends of alternating conjugated polymer electrolytes (CPEs)/poly(ethylene oxide) (PEO) were developed for use in quasi-solid-state dye-sensitized solar cells (DSSCs). The alternating CPEs poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-dioctyl-2,7-fluorene)]diiodide, poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2,7-fluorene)]diiodide (MPCFO-E), and poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(siloxane substituted-2,7-fluorene)]diiodide (MPCFS-E) were synthesized through copolymerization of carbazole units (featuring quaternized ammonium iodide groups) and fluorene units featuring flexible side chains (9,9-dioctylfluorene, ethylene oxide-substituted fluorene, and siloxane-substituted fluorene, respectively). The MPCFO-E/PEO-based and MPCFS-E/PEO-based DSSCs exhibited lower electrochemical resistances, superior photovoltaic (PV) properties, and improved PV stabilities relative to those of the corresponding PEO-based DSSC. Among the studied systems, the DSSC based on the MPCFO-E (0.5 wt.%)/PEO blend electrolyte exhibited the best PV performance, with a short current density of 4.97 mA cm−2 and a photoenergy conversion efficiency of 1.17%.  相似文献   

13.
《中国化学快报》2023,34(4):107411
Self-doping cathode interfacial layers (CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structures. Herein, four different polypyridinium salts with tunable backbones, side chains and counter-ions are elaborately designed to afford them desirable film-forming property, polarity, structural rigidity and self-doping feature. All-solution-processed red quantum dot light-emitting diodes (QLEDs) employing them as bifunctional CILs render remarkably improved device performances in contrast to the typical CIL material of poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN). The maximum external quantum efficiency of 2.74% achieved in this work represents one of the best values among the all-solution-processed QLEDs with individual organic CILs.  相似文献   

14.
We propose a simple way to achieve pure blue emission and improved device efficiency via capping poly(9,9-dioctylfluorene) (PFO) with electron-deficient moieties (EDMs, such as oxadiazole (OXD) and triazole (TAZ)), which can induce a minor amount of long conjugating length species (regarded as beta phase) to control extents of energy transfer from amorphous matrix to the beta phase. The device efficiency of PFO end-capped with TAZ is higher than that with para-tert-butyl phenyl (TBP) by a factor of 2 (with CsF/Al as cathode), and its electroluminescent spectrum remains stable and with pure blue emission during cyclic operations (C.I.E. color coordinates x = 0.165, y = 0.076, independent of operating voltage and within the limit for pure blue emission x + y < 0.30). The improvement of device efficiency is dependent on the structure of EDM, such as size and planarity. The deep blue emission is originated from the incomplete energy transfer from amorphous matrix to the beta phase induced by the end-cappers.  相似文献   

15.
A simple, rapid sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method is presented for isolating the alpha, alpha' and beta subunits of rabbit muscle phosphorylase kinase. The SDS-PAGE procedure can yield milligram amounts of alpha and beta from a single preparative gel and also allows isolation of the alpha' isozyme free of alpha. Notably the method provides the purified subunits in a form amenable to structural analysis. Edman degradation of alpha and alpha' reveal identical NH2-terminal structures. Amino acid analysis of the electrophoretically purified alpha and beta subunits are in good agreement with their deduced primary structures. The amino acid sequence of 488 residues in alpha and 713 residues in beta were determined by gas phase Edman degradation. The data support the recently deduced primary structures of alpha (Zander et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 9381-9385).  相似文献   

16.
The photoinduced electron-transfer process of a newly prepared, soluble, pi-conjugated poly[9,9-bis(4-diphenylaminophenyl)-2,7-fluorene] (PDPAF), covalently bridged, C60 triad (C60-PDPAF-C60) is described. The molecular orbital calculations revealed that the majority of the highest occupied molecular orbital (HOMO) is located on the polyfluorene entity, while the lowest unoccupied molecular orbitals (LUMO) are found to be entirely on the C60 entity. The excited-state electron-transfer processes were monitored by both steady-state and time-resolved emission as well as by transient absorption techniques in toluene and benzonitrile. By excitation of the polyfluorene moiety, fluorescence quenching of the singlet excited state of polyfluorene moiety was observed. The nanosecond transient spectra in near-IR region revealed the charge-separation process from the polyfluorene moieties to the C60 moiety through the excited singlet states of polyfluorene. The lifetimes of the charge separated states were evaluated to be 20-50 ns, depending on the solvent polarity.  相似文献   

17.
The photo-physical characteristics of semiconductor polymer are systematically stud-ied through comparing poly (9,9-dioctylfluorene) (PFO) and poly (9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). The quantum chemical calculation shows that the introduction of benzothiadiazole unit facilitates the intrachain charge transfer (ICT) and modulates the electronic transition mechanism of polymer. The transient absorption measurement exhibits that intrachain exciton relaxation is dominant in the decay of excited PFO in a monodis-perse system and intrachain exciton interaction could appear at high excitation intensity. In F8BT solution, the ICT state exists and participates in the relaxation of excited state. The relaxation processes of PFO and F8BT in the condensed phase both accelerate and show obvious exciton-exciton annihilation behavior at high excitation intensity. At the same excitation intensity, the mean lifetime of F8BT is longer than that of PFO, which may be assigned to the excellent delocalization of charge.  相似文献   

18.
A series of Schiff bases 2[n] with n = 4, 6, 8, 10, 12, and 18 was prepared by the condensation of 9,9'-diaminobis(tricarbollide)Fe(II) (1b) with appropriate 4-alkoxybenzaldehydes (3[n]). Thermal analysis showed that they form nematic and smectic phases with clearing temperatures above 200 degrees C. Comparative studies of series 2[n] and its organic analogs demonstrated that the effectiveness of bis(tricarbollide)Fe(II) in supporting liquid crystalline phases is between that of benzene and biphenyl for n < or = 18 and lower than that of benzene for n = infinity. The photophysical properties were investigated for the butoxy derivative 2[4] and modeled using ZINDO calculations.  相似文献   

19.
The title compound, 2,7-bis(4-pentylphenyl)-9,9-diethyl-9H-fluorene, is a new mesogenic compound containing the fluorene moiety. It exhibits a monotropic nematic liquid crystalline behaviour, with isotropisation temperature of 53°C. The compound is also polymorphic in the solid state, with one crystal phase melting at 103°C and another one melting at 71°C. The crystal and molecular structure of the high melting solid phase have been determined from single crystal X-ray diffraction analysis. Crystals are monoclinic, with cell dimensions a = 16.649(6) Å, b = 8.305(3) Å, c = 24.598(7) Å, β = 111.60(2)?, space group P21/c and four molecules in the unit cell. Refinement leads to R = 0.0558. The two terminal alkyl chains and one phenyl ring are disordered over two split positions. The imbricated molecular packing observed in the solid state seems to resemble that of the nematic phase that is formed upon cooling the melt.  相似文献   

20.
Crystal needles of N,N′-bis(1-ethylpropyl)-3,4,9,10-perylenebis(dicarboximide) (EPPTC) are produced through p-stacking and are embedded in the thin film of poly(9,9-din-hexylfluorenyl-2,7-diyl) (PFO) when the blend solution of EPPTC and PFO in p-xylene is spin-coated onto a glass substrate. Charge transfer (CT) complex is resolved from the spectroscopic response of the blend film, which is generated only when the PFO molecules are excited. Thus, the PFO molecules are specified as donors and the H-aggregated EPPTC as acceptors in the formation of CT state (CTS). The emission resulting from the CTS in the red is further recognized by its much longer lifetime than both the intrinsic emission of the individual EPPTC molecules and that of their pure aggregates. Near-field analysis verifies that the CTS form on the boundary between the PFO and the crystal phases. The CT exciton forms by bounding the hole left on HOMO of the donor (PFO) and the indirectly transferred electron to the H-aggregate state of EPPTC, which transits back to the ground state by emitting a photon at about 650 nm. This introduces special physics in the heterojunctions that are coupled with the H-aggregates and mechanisms important for the design of organic photovoltaic devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号