首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
杆式射流形成的数值模拟研究   总被引:13,自引:0,他引:13  
利用数值仿真软件LS-DYNA3D,通过数值模拟方法研究了药型罩压跨、射流的形成、延伸和失稳断裂的全过程,数值模拟结果与实验结果吻合较好,得到了一套实用的数值模拟方法及材料模型参数,定性分析了大锥角的药型罩压垮过程,对形成杆式射流的药型罩结构设计具有一定借鉴意义。  相似文献   

2.
测量10GPa爆压炸药爆轰波波形的光电技术   总被引:1,自引:0,他引:1  
《爆轰波与冲击波》2003,(4):159-163
  相似文献   

3.
蒋文灿  程祥珍  梁斌  聂源  卢永刚 《爆炸与冲击》2022,42(8):083303-1-083303-15

为了研究组合药型罩聚能装药战斗部对含水复合结构的毁伤机理,基于LS-DYNA软件的任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian, ALE)流固耦合算法,对水下组合药型罩聚能装药战斗部侵彻体的形成以及穿靶过程开展研究,采用数值模拟等比例模型对水下组合药型罩聚能装药战斗部对靶板毁伤进行试验验证。研究结果表明,在偏心亚半球缺罩罩顶设计偏心亚半球形罩能够在侵彻体前端形成细长的杆式射流,可以增加整个侵彻体长度和头部侵彻体速度。在穿水和靶板过程中,利用头部杆式射流形成空腔帮助后续侵彻体低阻随进。对靶板毁伤过程的分析发现,与战斗部直接连接的第1层靶板将会受到侵彻体的高速冲击作用和爆炸波沿水介质传播过来的强冲击波联合作用,而随着水层厚度的增加,沿水中传播的爆炸冲击波强度会被迅速衰减,爆炸冲击波对后续靶板的作用变得不明显,主要为侵彻体的冲击作用。最后利用设计的组合药型罩结构开展了试验验证,对比分析了每层靶板的穿孔尺寸,试验结果与数值计算结果符合较好,最大误差小于15%。

  相似文献   

4.
采用ALE方法对射孔弹射流形成的过程及聚能射流对混凝土靶板的侵彻进行了数值模拟,对比了锥形药型罩的不同锥角对聚能射流形成和侵彻的影响.研究结果表明药型罩的锥角大小对聚能射流的速度和形状、射流头部和杵体的质量、侵彻的宽度和深度有着明显显著的影响.小锥角射流头部比重较小且杵体速度未达到侵彻临界值而无法起到很好的侵彻效果,大...  相似文献   

5.

为了研究由含能材料制备的药型罩爆炸成型过程及其对目标靶的终点效应,设计了球缺形药型罩的装药结构,放置与药型罩曲率相同的缓冲垫在药型罩和主装药之间,运用高速摄影系统拍摄含能材料药型罩的成型过程。实验结果表明,含能材料药型罩在爆炸作用下能够形成弹丸,弹丸速度2km/s左右。含能弹丸穿透20mm厚的装甲钢靶后反应加剧,形成大量的气体。侵彻过程含动能和化学反应的综合作用,穿孔有明显的烧蚀现象,穿孔口径0.5 D,最大穿深1.4 D。利用含能材料制备成药型罩可以实现炸药的直接驱动,这可为含能材料战斗部的工程应用提供参考。

  相似文献   

6.
TATB微观结构对炸药爆轰波传播性能的影响   总被引:2,自引:0,他引:2  
采用不同工艺方法制备出了3种具有不同微观结构特征的超细TATB炸药粉体,用2%(质量分数)的F2311作粘结剂,压制出了不同密度的TATB基炸药试样。采用飞片短脉冲冲击起爆装置,研究了TATB基炸药中爆轰波的传播性能。研究结果表明,在一定的短脉冲冲击起爆条件下,TATB微观结构对炸药爆轰波传播性能影响较为明显。  相似文献   

7.
为进一步提高周向多爆炸成型侵彻体战斗部的毁伤效能,结合数值模拟方法,设计了一种爆炸成型杆式侵彻体战斗部。基于复合装药的爆轰加载控制方式,使得药型罩成型为密实的杆式侵彻体,通过调整半预制药型罩的斜置角度,对毁伤元的旋转速度施加控制,进而提高其空中飞行姿态的稳定性,提高毁伤元的毁伤威力。对不同斜置角度的战斗部原理样机进行了静爆实验,实验结果与模拟结果的对比表明,半预制药型罩斜置角度为1.5°时,爆炸成型杆式侵彻体的着靶姿态最好,对45钢靶板侵彻深度最大。通过药型罩斜置,在保证杆式侵彻体成型质量的同时,可以有效提高侵彻体的侵彻威力。  相似文献   

8.
本文用脉冲X光摄影技术及电探极-记录仪系统,对射流引爆及侵彻工业炸药的过程进行了观测,探讨了的流引爆及侵彻工业炸药的机制,给出了射流与工业炸药作用过程的物理图象。  相似文献   

9.
多孔药型罩聚能射流的稳定性   总被引:2,自引:0,他引:2  
基于Herrmann改进的Grneisen状态方程,对多孔药型罩受冲击压缩产生的温升进行了估算,从理论上分析了孔隙度对射流断裂时间的影响。使用脉冲X光测试并结合侵彻实验研究了药型罩初始孔隙度为9.3%和11.4%时聚能射流的稳定性。研究结果表明,在一定孔隙度范围内,射流的稳定性随孔隙度的增加而增强。  相似文献   

10.
环形多点起爆精度对聚能杆式侵彻体成型的影响   总被引:3,自引:0,他引:3  
针对环形多点起爆网络在多模成型装药上的应用问题,利用LS-DYNA 程序,通过改变延迟时间 和延迟点数,研究了6点起爆网络起爆同步精度对形成侵彻体的速度、长径比等参数的影响规律,并找出了引 起侵彻体弯曲变形的主要原因横向速度梯度的变化规律,得到了延迟时间在200ns以内可使形成的侵 彻体不发生弯曲变形,成型参数基本不变。进行了实验验证,实验结果与数值模拟结果吻合较好。  相似文献   

11.
有效射流结构模式的数值模拟   总被引:1,自引:0,他引:1  

应用LS-DYNA程序及示踪点信息后处理方法,将典型小锥角药型罩沿母线方向分为4段,研究其微元在炸药爆炸驱动下的运动规律及有效射流结构模式。射流形成并稳定后,将罩质材料按速度大小分为6段,得到各段结构组成模式。结果表明,有效射流高速段由药型罩顶部材料组成,次高速段及中速段由罩中部及中下部材料组成,靠近罩底部约0.25倍罩高范围内的材料不形成射流,有效射流段为初始材料微元的管状分层分布形结构。

  相似文献   

12.

提出通过水中实验确定炸药的水中爆轰产物JWL状态方程参数的方法;选择PBX-01高能炸药进行水中实验,利用ANSYS/LS-DYNA程序建立炸药的水中实验模型,将实验结果与数值计算结果进行对比,确定PBX-01炸药水中爆轰产物的JWL状态方程参数。研究结果显示,圆筒实验确定的JWL参数在反映炸药水中爆轰产物的膨胀状态时有所不足,水中实验确定的JWL状态方程参数能够更准确地描述PBX-01炸药水中爆轰产物的膨胀过程,因此对水中爆炸的研究需要通过水中爆炸实验建一套状态方程参数。

  相似文献   

13.
运用自行研制的二维流体动力学程序TDY2D,对一点起爆半球壳装药装置中散心爆轰波的传播过程进行数值模拟计算.对冲击波到达炸药和飞层各界面的波形的计算值与实验值进行了对比,两者符合较好,从而验证了该程序的准确性和有效性;对爆轰波的传播过程进行了分析研究,获得了一些散心爆轰波传播的规律性认识,为进一步研究散心爆轰波特性提供了数值分析基础.  相似文献   

14.
高-低爆速圆板炸药串联爆轰引起平面爆轰波的变凸现象   总被引:1,自引:0,他引:1  
为分析高-低爆速圆板炸药于空中串联爆轰时平面爆轰波在传播过程中演变成凸面波的现象,分别对平面爆轰波阵面后爆轰产物状态参数的分布、有效药量与柱面装药几何尺寸的关系、爆轰产物的状态方程及强爆轰关系式进行了讨论。并以100 mm50 mm的TNT与RC炸药串联爆轰为例,描述了平面爆轰波演变为凸面爆轰波的过程,预估了爆轰波的平面范围和波形差。预估结果与实验结果基本符合。  相似文献   

15.
单次脉冲爆轰发动机工作过程的数值模拟   总被引:1,自引:0,他引:1  
通过求解14组分和19个基元反应的CH4-O2-N2详细化学反应动力学机理的二维轴对称Navier-Stokes方程,对爆轰管内半球形高温火团引发的爆轰过程和爆轰波进入外流场后的全流场分布进行数值模拟。模拟结果显示了爆轰波在管内的成长、稳定传播、进入尾喷管后衰减为激波和进入外流场的全过程,以及爆轰管出口端附近区域的复杂涡与激波的相互作用。对轴线上的压力分布和封闭端的压力等进行了讨论,为脉冲爆轰发动机的开发研制提供参考信息。  相似文献   

16.
基于三波理论和Whitham方法对带隔板装药爆轰波相互作用后发生的正规反射和非正规反射进行了理论分析,给出了爆轰波发生马赫反射时临界入射角和马赫杆增长角等参数的变化规律,提出了马赫杆高度的计算模型。基于凝聚炸药爆轰Jones-Wilkins-Lee(JWL)模型和冲击起爆的Lee-Tarver模型,利用有限元计算软件对带隔板装药爆轰波的传播过程进行了数值模拟。结果表明,发生马赫反射后,随着爆轰波的传播,马赫杆的高度不断增加。数值模拟结果与理论计算结果吻合较好,说明本文中采用的理论模型和数值模拟方法能够较准确地描述带隔板装药爆轰波马赫反射的传播过程。  相似文献   

17.
爆轰波对碰区产物驱动金属圆管的研究   总被引:2,自引:2,他引:0  
利用闪光X光照相、光学高速分幅照相实验,测得了金属圆管在两个爆轰波对碰后产物驱动外壳的膨胀、变形过程,该过程表明爆轰波对碰作用使得对碰处金属圆管相对贯穿断裂时间明显提前,对碰处金属圆管径向膨胀速度较非对碰处明显增加。利用拉格朗日二维流体动力学程序TTD2C,数值模拟了对碰驱动过程,计算结果与实验结果符合很好,且用Taylor断裂判据得到的金属圆管相对贯穿断裂时间也明显提前。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号