首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ab initio CI calculations are reported on the lowest doublet, quartet, and sextet states of [FeIII(P)(NH3)2]+. The low-spin ground state is calculated as (dxy2 (dπ)3 with dxy(dπ)4 higher by 0.15 eV. The near-ir bands at ~1 eV observed in low-spin ferriheme proteins are attributed to (π → dπ) transitions. The lowest high-spin state is 6A1g, and the near-ir transitions of the high-spin ferriheme proteins observed at ~1.2 eV are attributed to higher 6[tripsextet] excited states [i.e., ring triplet, metal sextet]. The 30-ps “triplet” transient populated with low quantum yield observed in laser-flash studies on FeIII(TPP)CI [TPP = tetrapbenylporphyrin] may be an 1[tripsextet] state.  相似文献   

2.
Ab initio configuration interaction calculations are reported on the lowest quintet, triplet, and singlet states of FeII(P). Due to the large number of states found, a catalog of the low-lying states is presented. Novel triplet and quintet charge-transfer states are reported as low as 1.3 eV. These states are d5 (S = 5/2) on the iron low-spin-coupled to the radical anion excited porphyrin ring (S = 1/2 or 3/2). Oscillator strengths originating from each of three low-energy triplet states are reported.  相似文献   

3.
Ab initio methods have been used to calculate the ground and excited states of “normal” and “hyper” porphyrins. Perturbation theory and CI methods were used to determine differential ground and excited-state correlation effects for [Pv(P)F2]+ and [PIII(P)]+. A comparison is made to the INDO /S /CI predicted wavefunctions and spectra and to the experimental spectra of closely related molecules. The “hyper” [PIII(P)]+ calculations show some very low energy electronic transitions which provide an explanation for an anomalous “red” band in the spectrum and for the lack of fluorescence. Ab initio calculations also predict that (1) the lowest energy 1A1 state is a two-configuration wavefunction which can be described as a diradical, (2) the two lowest-energy singlet excited states are double excitations from the closed shell SCF configuration, and (3) a 3B2 state is very close in energy to the lowest 1A1 state.  相似文献   

4.
A new 2Σ+-X2Σ+ transition in MgH has been found in emission. The upper state of this system lies lower in energy than any of the previously identified excited 2Σ+ states of MgH. The 2Σ+ state is relatively weakly bound at large internuclear distance. This discovery allows a reinterpretation to be made of the MgH electronic state manifold and its correlation with the states of the separated atoms and provides an explanation for some puzzling and long-standing observations in the MgH electronic spectrum.  相似文献   

5.
The environmentally active molecule nitrogen dioxide (NO2) has been systematically studied using high level theoretical methods. The electronic ground state and the low-lying quartet states of NO2 have been investigated. Single reference restricted open-shell self-consistent field (SCF), complete active space SCF (CASSCF), spin-restricted (R) and spin-unrestricted (U) configuration interaction with single and double excitations (CISD), coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], and internally contracted multireference configuration interaction (ICMRCI) methods along with Dunning's correlation consistent polarized valence cc-pVXZ and augmented cc-pVXZ (where X=T,Q,5) basis sets were used in this research. At the aug-cc-pV5Z/UCCSD(T) level the classical adiabatic excitation energies (Te values) of the three lowest-lying quartet excited states were predicted to be 83.3 kcalmol (3.61 eV, 29 200 cm(-1)) for the ? 4A2 state, 93.3 kcalmol (4.05 eV, 32 600 cm(-1)) for the b 4B2 state, and 100.8 kcalmol (4.37 eV, 35 300 cm(-1)) for the c 4A1 state. The quantum mechanical excitation energies (T 0 values) were determined to be 81.6 kcalmol (3.54 eV, 28 500 cm(-1)) for the a 4A2 state and 90.7 kcalmol (3.93 eV, 31 700 cm(-1)) for the b 4B2 state. The lowest quartet linear Renner-Teller 4Pi state gives rise to the a 4A2 state with 112.8 degrees and the b 4B2 state with 124.4 degrees <(ONO) bond angles upon bending. The b state shows some peculiar behavior. Although CASSCF, RCISD, UCISD, RCCSD, UCCSD, and RCCSD(T) methods predicted the presence of a Cs equilibrium geometry (a double minimum 4A' state), SCF, UCCSD(T), and ICMRCI wave functions predicted the C2v structure for the b 4B2 state. The importance of both dynamical and nondynamical correlation treatments for the energy difference between C2v and Cs structures of b state is highlighted in this context. The c 4A1 state is predicted to have a very small bond angle of 85.8 degrees . Potential energy diagrams with respect to the bond angles of the ground state and four quartet states are presented.  相似文献   

6.
The present study describes the characterization of energy and structure of HBr(2+) in its low-lying electronic states, achieved through an extension of a new empirical method [Chem. Phys. Lett. 379, 139 (2003)] recently introduced to evaluate the interatomic interaction in the HX(2+) (X=F,Cl,Br,I) molecular dications. The method is based on identification of the main components of the interaction and their evaluation through some simple correlation formulas. Potential energy curves, given in a simple, natural, and analytical form, made possible the calculations of some important properties, such as double-photoionization energy thresholds, vibrational spacing, average lifetime, and Franck-Condon factors. The predictions, compared with data available in the literature, are of great interest for the analysis and interpretation of some new experimental results.  相似文献   

7.
A series of axially ligated complexes of iron(III) octamethyltetraphenylporphyrin, (OMTPP)Fe(III), octaethyltetraphenylporphyrin, (OETPP)Fe(III), its perfluorinated phenyl analogue, (F(20)OETPP)Fe(III), and tetra-(beta,beta'-tetramethylene)tetraphenylporphyrin, (TC(6)TPP)Fe(III), have been prepared and characterized by (1)H NMR spectroscopy: chloride, perchlorate, bis-4-(dimethylamino)pyridine, bis-1-methylimidazole, and bis-cyanide. Complete spectral assignments have been made using 1D and 2D techniques. The temperature dependences of the proton resonances of the complexes show significant deviations from simple Curie behavior and evidence of ligand exchange, ligand rotation, and porphyrin ring inversion at ambient temperatures. At temperatures below the point where dynamics effects contribute, the temperature dependences of the proton chemical shifts of the complexes could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in our laboratory that includes consideration of a thermally accessible excited state. The results show that, although the ground state differs for various axial ligand complexes and is usually fully consistent with that observed by EPR spectroscopy at 4.2 K, the excited state often has S = (3)/(2) (or S = (5)/(2) in the cases where the ground state has S = (3)/(2)). The EPR spectra (4.2 K) of bis-4-(dimethylamino)pyridine and bis-1-methylimidazole complexes show "large-g(max)" signals with g(max) = 3.20 and 3.12, respectively, and the latter also shows a normal rhombic EPR signal, indicating the presence of low-spin (LS) (d(xy))(2)(d(xz),d(yz))(3) ground states for both. The bis-cyanide complex also yields a large-g(max) EPR spectrum with g = 3.49 and other features that could suggest that some molecules have the (d(xz),d(yz))(4)(d(xy))(1) ground state. The EPR spectra of all five-coordinate chloride complexes have characteristic features of predominantly S = (5)/(2) ground-state systems with admixture of 1-10% of S = (3)/(2) character.  相似文献   

8.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

9.
Iron(IV) porphyrins   总被引:1,自引:0,他引:1  
  相似文献   

10.
《Chemical physics letters》1987,139(2):149-154
Extended MC SCF computations of the CAS SCF type have been performed on four energetically low-lying electronic states of HeC2+ dications. The X 1Σ+ ground state is predicted to be thermodynamically stable by 0.72 eV, while the a 3Π and A 1Π excited states represent metastable species with barrier heights of 2.19 and 0.20 eV, respectively. The b 3Σ+ state exhibits merely a very shallow potential dip with a well depth of only 0.06 eV. The HeC2+ dication is therefore predicted to be experimentally observable in the gas phase. Bonding in these unusual dications is discussed and compared to the isoelectronic CH+ cation.  相似文献   

11.
Dual excited states of nickel(II) meso-tetra(4-sulfonatophenyl)porphyrin (NiTPPS) and nickel(II) meso-tetraphenylporphyrin (NiTPP) have been investigated by two-pump-one-probe transient absorption spectrometry. By dual excited states, we mean molecular entities that have absorbed two photons to generate molecular states with electronic excitation in two distinct regions of metalloporphyrin. Two successive pulses of 400 and 550 nm were used for excitation. The first pulse (400 nm) produced an S2 state of the porphyrin pi-system, which deactivated to give rise to an S1 state and subsequently produce a metal-centered (d,d) state. The second (550 nm) pulse selectively targeted an S0 --> S1 transition of those molecules having an excited metal center and was delivered to the sample approximately 40 ps after the first excitation event. At this time, the ground state of the tetrapyrrole pi-system was already regenerated and the excitation was localized at the metal center. The kinetic profiles of the NiTPPS transients in DMSO revealed biexponential decays with time constants of 0.6 and 4 ps. Photoexcitation of NiTPP in toluene and NiTPPS in water resulted in similar behavior. A mechanism for the Ni(II) porphyrin dual excited state deactivation involving the formation of an intramolecular charge transfer state has been proposed.  相似文献   

12.
A new minimum basis set was developed for use in computing excitation energies of large molecules. It is particularly suited to calculating ionization potentials and Rydberg transitions. Pyrrole excitation energies and oscillator strengths calculated with this basis set are compared to larger basis set ab initio and semiempirical results. The 6-eV band in the experimental spectrum is predicted to be the result of three Rydberg absorptions, with no underlying (π, π*) absorption. The calculations also provide an explanation for the observed N? H stretch in the 6-eV region.  相似文献   

13.
The electronic states of diazomethane in the region 3.00-8.00 eV have been characterized by ab initio calculations, and electronic transitions in the region 6.32-7.30 eV have been examined experimentally using a combination of 2 + 1 REMPI spectroscopy and photoelectron imaging in a molecular beam. In the examined region, three Rydberg states of 3p character contribute to the transitions, 2(1)A2(3p(y) <-- pi), 2(1)B1(3p(z) <-- pi), and 3(1)A1(3p(x) <-- pi). The former two states are of mostly pure Rydberg character and exhibit a resolved K structure, whereas the 3(1)A1(3p(x) <-- pi) state is mixed with the valence 2(1)A1(pi* <-- pi) state, which is unbound and is strongly predissociative. Analyses of photoelectron kinetic energy distributions indicate that the ground vibrational level of the 2(1)B1(3p(z)) state is mixed with the 2(1)A2(3p(y)) nu(9) level, which is of B1 vibronic symmetry. The other 2(1)A2(3p(y)) vibronic states exhibit pure Rydberg character, generating ions in single vibrational levels. The photoelectron spectra of the 3(1)A1(3p(x) <-- pi) state, on the other hand, give rise to many states of the ion as a result of strong mixing with the valence state, as evidenced also in the ab initio calculations. The equilibrium geometries of the electronic states of neutral diazomethane were calculated by CCSD(T), using the cc-pVTZ basis, and by B3LYP, using the 6-311G(2df,p) basis. Geometry and frequencies of the ground state of the cation were calculated by CCSD(T)/cc-pVTZ, using the unrestricted (UHF) reference. Vertical excitation energies were calculated using EOM-CCSD/6-311(3+,+)G* at the B3LYP optimized geometry. The theoretical results show that the 2(1)A2(3p(y) <-- pi) and 2(1)B1(3p(z) <-- pi) states have geometries similar to the ion, which has C(2v) symmetry, with slight differences due to the interactions of the electron in the 3p orbital with the nuclei charge distributions. The geometry of the 3(1)A1(3p(x) <-- pi) state is quite different and has Cs symmetry. The experimental and theoretical results agree very well, both in regard to excitation energies and to vibrational modes of the ion.  相似文献   

14.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

15.
16.
Vilsmeier formylation of copper(II) octaethylporphyrin (1) is shown to yield the copper(II) complexes of meso-monoformyloctaethylporphyrin, meso-α,β- and meso-α,γ-diformyloctaethylporphyrins, meso-α,β,γ-triformyloctaethylporphyrin, and meso-α,β,γ,δ-tetraformyloctaethylporphyrin. There is therefore no difference in regioselectivity of meso-diformylation between the octaethylporphyrin and etioporphyrin-I series.  相似文献   

17.
The geometric and electronic structures of a series of conjugated macrocycles (phenylene-acetylene macrocycles, PAMs) have been studied theoretically with ab initio and semiempirical molecular orbital methods. The ab initio calculations at the HF/6-31G* level demonstrate that the model molecules may have a planar conformation. Bigger macrocycles, for example, 7PAM, 8PAM, and 9PAM, result in several energy minima. The boatlike conformation is the most energetically favored form. Based on the conformational analysis, a novel method for analyzing the ring-strain energy was proposed and used. In view of their potential applications as electronic materials, the electronic structures of a series of PAMs are also investigated. The LUMO-HOMO gaps of the planar PAMs show an odd-even difference behavior. In addition, the HOMOs of the planar species 3PAM, 5PAM, 7PAM, and 9PAM are doubly degenerated.  相似文献   

18.
Configuration interaction calculations have been carried out on electronic states of the NaLi molecule and the cation NaLi(+). Potential energy curves are presented for the lowest nine (1)Sigma(+), seven (1)Pi, four (1)Delta, eight (3)Sigma(+), seven (3)Pi, and four (3)Delta states of NaLi as well as for the lowest ten (2)Sigma(+), six (2)Pi, and two (2)Delta states of NaLi(+). The results of the present many-electron configuration interaction calculations on the cation are in support of previous core-polarization effective potential calculations. The present calculations on the NaLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously as well as an investigation of nonadiabatic effects leading to spectral perturbations. Furthermore, ab initio potential energy curves of the neutral and the ground state of the cation are employed to determine quantum defect that may be employed to generate potential energy curves for nd and (n+1)p (for n>3) Rydberg states of NaLi. The present results on the 3 (1)Pi and 4 (1)Pi states are in good agreement with recent experimental work, whereas on the basis of theoretical data, the recently observed state 5 (1)Pi is better described as 6 (1)Pi.  相似文献   

19.
From picosecond flash photolysis and spectroscopy, the absorption spectra of the first excited singlet S1 and of the first excited triplet T1 of (OEP)SnCl2 are determined; we also determine triplet quantum yield, φt ≈ 0.80. Similar S1 and T1 phototransient absorption spectra occur in (OEP)Pd. However, two Cu porphyrins show only one phototransient absorption spectrum. Our T1 absorption results are generally consistent with the available earlier spectroscopic studies made with other techniques. Our value for φt lies intermediate between values given by two earlier studies, which were based on two different methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号