首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
Binary blends of poly(2,6–dimethyl–1,4–phenylene oxide) (PPE) with various styrene copolymers were investigated. Poly(styrene–co–acrylonitrile) (SAN), poly[styrene–co–(methyl methacrylate)] (SMMA), poly[styrene–co–(acrylic acid)] (SAA) and poly[styrene–co–(maleic anhydride)] (SMA) are only miscible with PPE when the amount of comonomer is rather small. From calculated binary interaction densities it can be concluded that the strong repulsion between PPE and comonomer limits miscibility. In blends of PPE with SAN, as well as with ABS, the inter-facial tension between the blend components is significantly reduced upon addition of polystyrene–block–poly–(methyl methacrylate) diblock copolymers (PS–b–PMMA) and polystyrene–block–poly (ethylene–co–butylene)–block–poly–(methyl methacrylate) triblock copolymers (PS–b–PEB–b–PMMA). They show a profound influence on morphology, phase adhesion and mechanical blend properties.  相似文献   

2.
A novel route to synthesize catenated macrocyclic PS–PMMA block copolymers is demonstrated via combination of supramolecular chemistry and controlled radical polymerization (CRP). Polymerization of styrene with bromopropionate ester initiator coupled with phenanthroline Cu(I) complex affords a four arm PS macroinitiator, which upon further chain extension by polymerization of MMA generates a four arm PS–PMMA block copolymer. Intramolecular coupling of PS–PMMA–Br arms via low temperature styrene‐assisted atom transfer radical coupling (ATRC) leads to the formation of PS–PMMA catenand, which generates the metal‐free catenated macrocyclic PS–PMMA block copolymer after removal of Cu metal. The interlocked structures of catenated block copolymers are confirmed by GPC, NMR, and AFM image analysis.  相似文献   

3.
Compatibilization of polystyrene/polypropylene (PS/PP) blends, by use of a series of butadiene–styrene block copolymers was studied by means of small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). The compatibilizers used differ in molar mass and the number of blocks. It was shown that the ability of a block copolymer (BC) to participate in the formation of an interfacial layer (and hence in compatibilization) is closely associated with the molar mass of styrene blocks. If the styrene blocks are long enough to form entanglements with the styrene homopolymer in the melt, then the BC is trapped inside this phase of the PS/PP blends, and its migration to the PS/PP interface is difficult. In this case, the BC does not participate in the formation of the interfacial layer nor, consequently, in the compatibilization process. On the other hand, the BC's with the molar mass of the PS blocks below the critical value are proved to be localized at the PS/PP interface. This preferable entrapping of some styrene–butadiene BC's in the PS phase of the PS/PP blend is, of course, connected to the differing miscibility of the BC blocks with corresponding components of this blend. Although the styrene block is chemically identical to the styrene homopolymer in the blend, the butadiene block is similar to the PP phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1647–1656, 1999  相似文献   

4.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

5.
Compatibilization of blends of linear low-density polyethylene (LLDPE) and polystyrene (PS) with block copolymers of styrene (S) and butadiene (B) or hydrogenated butadiene (EB) has been studied. The morphology of the LLDPE/PS (50/50) composition typically with 5% copolymer was characterized primarily by scanning electron microscopy (SEM). The SEB and SEBS copolymers were effective in reducing the PS domain size, while the SB and SBS copolymers were less effective. The noncrystalline copolymers lowered the tensile modulus of the blend by as much as 50%. Modulus calculations based on a coreshell model, with the rubbery copolymer coating the PS particle, predicted that 50% of the rubbery SEBS copolymer was located at the interface compared to only 5–15% of the SB and SBS copolymers. The modulus of blends compatibilized with crystalline, nonrubbery SEB and SEBS copolymers approached Hashin's upper modulus bound. An interconnected interface model was proposed in which the blocks selectively penetrated the LLDPE and PS phases to provide good adhesion and improved stress and strain transfer between the phases. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Summary: PE‐block‐PS and P(E‐co‐P)‐block‐PS block copolymers were synthesised via sequential monomer addition during homogeneous polymerisation on various phenoxyimine catalysts. One phenoxyimine catalyst was tailored to produce high molecular weight block copolymers containing both, polyolefin and polystyrene segments. According to chromatographic analysis and TEM morphology studies, blends of block copolymers and PE homopolymers [or P(E‐co‐P), respectively] were formed. The direct olefin/styrene block copolymer synthesis on phenoxyimine catalysts represents an attractive, new one‐pot route to styrenic block copolymers which are commercially prepared by anionic styrene/diene block copolymerisation followed by hydrogenation.

  相似文献   


7.
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.  相似文献   

8.
A systematic investigation of the dynamic mechanical properties of high-density polyethylene (HDPE)/high-impact polystyrene (HIPS)/copolymer blends was carried out. Blends of 80/20 weight percent of HDPE/HIPS were prepared in the melt state at 180°C in a batch mixer. Synthesized pure diblock (H77) and tapered diblock (H35) copolymers of hydrogenated polybutadiene (HPB) and polystyrene (PS) were added at different concentrations (1, 3, and 5 wt %), and the dynamic mechanical properties were investigated. The results show that: (1) both the tapered and the pure diblock copolymers enhance the phase dispersion and the interphase interactions; (2) structure and molecular weight are both important parameters in the molecular design of copolymers; (3) important effects occur when only small amounts of copolymer are added (up to the interface saturation concentration SC); (4) a micellar structure formation is possible when the copolymer is in excess in the blend; (5) the effect of the copolymer structure on the SC and the critical micellar concentration (CMC) is more pronounced than the effect of molecular weight. These concentrations are found to be lower for the tapered diblock copolymer. The analysis of the dynamic mechanical thermal analysis (DMTA) results obtained for the 20/80 HDPE/HIPS blend leads to the conclusion that the copolymers also enhance the interactions between heterogeneous phases. Similar conclusions based on electron microscopy were reported in the literature. DMTA shows great potential to relate macroscopic observations to the state of a copolymer in an immiscible blend.  相似文献   

9.
利用具有准单分子层灵敏度的和频振动光谱(SFG)、原子力显微镜(AFM)和接触角(CA)测定技术研究链结构和溶剂对苯乙烯(S)/丁二烯(B)嵌段共聚物表面准分子层化学结构形成的影响.结果表明,两嵌段共聚物SB比三嵌段共聚物SBS更有利于聚丁二烯(PB)组分在膜表面富集.利用PB的选择性溶剂环己烷做溶剂时,SB膜表面层完全由纯的PB组分组成,而SBS表面则是聚苯乙烯(PS)与PB二组分共存.利用PS的选择性溶剂甲苯做溶剂时,SB与SBS表面都是PS与PB二组分共存,其中SBS表面PS组分的含量更高.原因是由于溶剂影响嵌段共聚物分子在溶液中的构象从而影响溶剂挥发后聚合物表面结构的形成.  相似文献   

10.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

11.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

12.
Correlation between morphology and micromechanical deformation behaviour of blends consisting of a lamellae-forming linear styrene/butadiene block copolymer and polystyrene homopolymer (hPS) was studied by different microscopic techniques (transmission electron microscopy and scanning electron microscopy) and rheo-optical Fourier transformed infrared spectroscopy. Attributable to a change in morphology from well-ordered lamellae to a distorted one, a transition in deformation mechanism from homogeneous plastic flow of the lamellae to formation of local craze-like deformation zones was observed on addition of hPS. The latter led to a drastic reduction in elongation at break. An abrupt depression in the degree of orientation of the polystyrene (PS) and the polybutadiene (PB) phases in the blends suggested that the failure occurs at the interface between the added hPS and PS blocks of the block copolymer.  相似文献   

13.
The phase behaviors of binary blends of poly(styrene‐b‐butadiene) block copolymers were investigated by a small‐angle X‐ray scattering technique. The blends were composed of weakly segregated one in a random micellar phase and the other in a cylindrical phase with similar molecular weights and complementary volume fractions. Morphologies, domain spacings, and order–disorder transition temperatures of the blends indicated that the junctions of the constituent block copolymers share the interface at low temperatures. The domain spacing decreased as temperature increased in a blend with a small amount of the weakly segregated block copolymer. In the cases of the blends with a large amount of the weakly segregated constituent, domain spacing increased with increasing temperature. These results implied that some of the weakly segregated block copolymer moved from the interface to one microdomain at higher temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 470–476  相似文献   

14.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

15.
PSt-b-PEO增容PA6/PS共混体系的研究   总被引:1,自引:0,他引:1  
采用动态力学方法(DMA),形态学方法(SEM),研究了PSt b PEO存在下尼龙6(PA6)/聚苯乙烯(PS)共混体系的相容性.研究表明,PA6和PS的简单共混体系,分散相相畴尺寸大,相界面清晰,断裂面光滑,呈脆性断裂,相容性极差,属不相容体系.而加入少量PSt b PEO后分散相尺寸变小,界面层变厚,界面粘结力增强,表现出韧性特征.  相似文献   

16.
The stability against the thermal annealing of a cocontinuous two‐phase morphology developed in polystyrene (PS)/low‐density polyethylene (LDPE) blends containing 80 wt % PS was investigated. Blends containing 1, 5, and 10 wt % of a tapered diblock poly(styrene‐block‐hydrogenated butadiene) (P(S‐b‐hB)) or triblock poly(styrene‐block‐hydrogenated butadiene‐block‐styrene) (P(S‐hB‐S)) copolymer were melt‐blended with roll‐mill mixing equipment. The efficiency of each of the two copolymers in stabilizing against coalescence the cocontinuous morphology was examined. The tensile properties of the resulting blends, annealed and nonannealed, were also examined in relation to the morphology induced by thermal annealing. The phase morphology was studied by optical and scanning electron microscopy. With computer‐aided image analysis, it was possible to obtain a measurable characteristic parameter to quantify the cocontinuous phase morphology. When it was necessary, the extraction of one phase with a selective solvent was performed. Although the observed differences were subtle, the tapered diblock exhibited a more efficient compatibilizing activity than the triblock copolymer, particularly at a low concentration of about 2 wt %. The superiority of the tapered diblock over the triblock might be due to its ability to quantitatively locate at the LDPE/PS interface and consequently form a more efficient barrier against the subsequent breakup of the elongated structures of the cocontinuous phase morphology. The tensile properties of the triblock‐modified blends were more sensitive to thermal annealing than the tapered‐modified ones. This deficiency was ascribed to the phase morphology coarsening of the dispersed polyethylene phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 202–216, 2003  相似文献   

17.
Polystyrene–poly(ethylene oxide) PS–PEO di- and triblock copolymers have been used as stabilizers in the emulsion polymerization of styrene and styrene–butylacrylate for the preparation of “hairy latexes”. The polymerization kinetics and the efficiency of these polymeric surfactants were correlated with the molecular characteristics of the block copolymer. It was shown that the efficiency decreased with increasing molecular weight and PS content of the block copolymer. The PEO frige, with a thickness of 4–25 nm, on the latex particle surface could be characterized and it was shown by differential scanning calorimetry (DSC) that water is strucured in that PEO layer. Film formation with “hairy latexes” was also examined both by DSC and thermomechanical analysis. The properties and application possibilities, such as in controlled latex flocculation, have been reviewed.  相似文献   

18.
Dilute solution viscosity and osmotic pressure measurements were performed on polystyrene (PS), polybutadiene (PB), polystyrene–polybutadiene (SB) diblock and polystyrene–polybutadiene (SBS) triblock copolymers. Anionic polymerization was used in such a way that the molecular weight of the PS block was kept constant (ca. 10 000), while the molecular weight of the PB block varied from 18000 to 450000. The measurements were carried out at a fixed temperature of 34.20°C in three solvents, namely toluene, a good solvent for PS as well as for PB, dioxane, which is a good solvent for PS and almost a theta solvent for PB, and cyclohexane, which is nearly a theta solvent for PS and a good solvent for PB. The compositions of SB and SBS, as derived from kinetic data agree with ultraviolet measurements in CHCl3 solutions. The viscosity and osmotic pressure results indicate that the properties of SB and SBS are similar. Their intrinsic viscosities and second virial coefficients can be calculated from their chemical compositions, molecular weight, properties of parent polymers, and values of the interaction parameter \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}}$\end{document} between styrene and butadiene units, for molecular weights not exceeding approximately 105. The magnitude of \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}} $\end{document} varies with the solvent. The results suggest that the domains of the PS and PB blocks overlap to a great extent.  相似文献   

19.
The influence of middle and outer block composition of symmetric triblock copolymers consisting of a polystyrene–polybutadiene (S/B) random middle block and two polystyrene (PS) outer blocks on morphology and rheological behavior has been investigated. Master curves are obtained by shifting the experimental data measured at different temperatures using time‐temperature superposition principle, the validity of which was confirmed in the linear viscoelastic regime. The rheological properties are observed to be strongly influenced by the relative composition of the S‐SB‐S triblock copolymers. Increasing the S/B ratio from 1:1 to 1:2 in the middle block has lead to a change in morphology from wormlike to lamellar, which is also accompanied with broad and sharp tan δ peaks in the dynamic mechanical measurements, respectively. The storage and loss modulus have been observed to increase with the increase in PS contents in the outer blocks and PB content in the middle block. The triblock copolymer with wormlike structure showed terminal linear viscoelastic behavior, whereas the ones with lamellar morphology showed nonterminal flow behavior in the similar low‐frequency regime. The relaxation modulus (Gt) has been observed to increase four times when the S/B ratio is increased from 1:1 to 1:2, whereas it increases threefold when the PS‐content in the outer block was increased by just 8 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2776–2788, 2006  相似文献   

20.
研究了不同组成的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)的相形态与粘弹弛豫.用透射电子显微镜(TEM)表征了SBS的形态,结果显示,几种SBS均呈层状结构,随着苯乙烯含量的降低,聚苯乙烯(PS)相的尺寸稍有减小,而聚丁二烯(PB)相尺寸明显增大.用动态流变学方法考察了不同温度下SBS嵌段大分子的弛豫行为,结果表明,苯乙烯含量减少,PS相玻璃化转变和有序-无序转变温度均降低;苯乙烯含量少的,在有序-无序转变过程中呈现出高且宽的损耗峰,表明有序-无序转变过程中能量的耗散主要由两相溶合时分子链间的内摩擦所决定,分子链越长,内摩擦越大,能量耗散越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号