首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methane and isobutane chemical ionization mass spectra of alicyclic substituted 2-aryl-1,3-dithianes were examined by gas chromatography mass spectrometry. The protonated molecular ion was found to be of low abundance in the methane spectra, while a protonated cyclic sulfide cation (m/z 107) appeared as the base peak. A protonated molecular ion was the base peak when isobutane was used as the reagent gas. Electron impact mass spectra displayed weak molecular ions and were characterized by the m/z 106 fragment.  相似文献   

2.
Desorption chemical ionization mass spectrometry employing ammonia as the reagent gas has been extensively used to obtain molecular mass and structural information on a wide variety of compounds. Mass-deficient reference standards normally used for calibration purposes in mass spectrometry do not provide adequate mass spectra under ammonia chemical ionization conditions. In order to overcome this problem a mixture of ammonia and methane as reagent gases was employed. In high-resolution accurate mass measurement experiments, this gas mixture allows the simultaneous detection of mass spectra of perfluorokerosene adequate for calibration purposes and spectra containing molecular mass information of the analyte. A needle valve system was used to control the composition of the gas mixture introduced into the ion source. For positive-ion accurate mass measurements of higher masses (up to m/z = 2300), Fomblin 18/8 oil was successfully used as a reference standard under ammonia, methane and isobutane desorption chemical ionization conditions.  相似文献   

3.
The ratio of the fragment ions at m/z 122 and m/z 123 in the positive ion fast atom bombardment or secondary ion mass spectra of thiamine hydrochloride varies with sample preparation and experimental conditions. For all mass spectra that contained significant abundances of matrix (S) ions [S + H]+, the fragment at m/z 123 is the more abundant of the two ions. If [S + H]+ ions are not observed in the mass spectrum under the conditions selected, the ion at m/z 122 is more abundant. This correlation suggests that hydrogen transfer to the fragment ion occurs in the gas phase, with the composition of the ion-solvent cluster ions in the selvedge region being the key factor. The ratio of the fragment ions at m/z 123 and m/z 122 is thus an indicator of the extent of protonation in the selvedge, the region immediately above the solvent surface created by primary particle bombardment.  相似文献   

4.
N-Methylaniline (NMA) was ethylated and N-ethylaniline (NEA) was methylated under chemical ionization conditions using C2H5I and CH3I, respectively, as reagent gases. The structures of the resulting m/z 136 adduct ions have been probed using metastable ion and collision-induced dissociation (CID) methods. From the similarity of the spectra obtained and from the presence of structure-diagnostic ions at m/z 59 (CH3NHC2H5+•) and m/z 44 (CH3NHCH2+), it is concluded that predominantly N-alkylation occurs in both systems. This interpretation was aided by the use of C2D5I and CD3I as reagents. Adduct ions of m/z 136 were also formed by ethylation of the isomeric toluidines and by methylation of the ring-ethylanilines. The resulting CID mass spectra were distinctly different from those obtained for the m/z 136 ions obtained by alkylation of NMA and NEA. Protonation of N-ethyl-N-methylaniline using CH3C(O)CH3 as Brønsted acid reagent produced an m/z 136 species whose CID mass spectrum also featured intense ion signals at m/z 59 and 44. This observation led to the conclusion that protonation with acetone as reagent results, in this case, in dominant N-protonation. However, the CID mass spectrum of the m/z 136 ion formed when CH3OH was the protonating agent featured a weak signal at m/z 44 and no signal at m/z 59. Hence it was concluded that the latter m/z 136 ion contains a larger contribution from the ring-protonated adduct. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The synthesis of a novel electrophoric derivatisation reagent, o-(pentafluorobenzyloxycarbonyl)-2,3,4,5-tetrafluorobenzoyl chloride, is described. The reagent was tested against selected primary and secondary amino compounds, as well as phenolic and aliphatic hydroxyl compounds as analytical targets. The derivatives exhibit excellent mass spectral properties under negative ion chemical ionisation, i.e. reduced fragmentation and thus high ion current for the targeted m/z during analysis. Since the reagent bears a pentafluorobenzyl ester group, resulting negative ion chemical ionisation mass spectra were expectedly dominated by dissociative resonance electron capture typically observed with these compounds, additionally showing neutral loss of carbon dioxide and ammonia (in the case of primary amines). The reagent is suitable for detecting the target compounds with high sensitivity, as exemplified for the analysis of amphetamine and methylphenidate from human plasma where chromatographic background is drastically reduced by a shift in detected m/z and retention time and lower limits of quantification at 7.8 pg/mL (amphetamine) and 4.5 pg/mL (methylphenidate) can be obtained. The choice of two or three target quantification masses allows selective detection and adjustment of lowest background interference. No carryover effect was observed for the derivatives of amphetamine and methylphenidate.  相似文献   

6.
CI mass spectra of the five isomeric vicinal d2-decanes have been recorded using methane and d4-methane as reagent gases. In contrast to earlier suggestions, we find that a large fraction of the alkyl fragment ions from n-decane are formed by elimination of olefins from the abundant [M – 1] ion. Only the C9 and C8 fragment ions are produced completely by a one-step reaction between the decanes and the methane reagent ions. Isotope exchange does not occur between the hydrocarbon and the reagent ions derived from d4-methane but extensive scrambling of the deuterium label in the d2-decanes does take place in the [M – 1] ion.  相似文献   

7.
Pyrolysis-mass spectrometric studies of cellulose indicate low abundances of levoglucosan in the product spectrum compared to the yield values determined in more conventional types of pyrolysis studies. To examine the reason for these conflicting observation, levoglucosan was examined under different ion source conditions and ionization modes to ascertain the relative contributions of thermal degradation and ionization fragmention to the low abundances of the levoglucosan molecular ion. Low-energy electron ionization using conventional sample volatilization and molecular-beam sampling is compared to chemical ionization using methane, isobutane, and ammonia as reagent gases, and to field ionization and desorption. The mass spectrometric fragmentation patterns under the various systems indicate that studies of cellulose pyrolysis underestimate the amount of levoglucosan formed due to ionization fragmentation and thermal rearrangement reactions in the ion source. Several peaks, including m/z 126 and 144, are dominated by the contribution from the fragmentation of levoglucosan.  相似文献   

8.
The sodium adduct of disodium salts of benzene dicarboxylic acids (m/z 233), when subjected to collision‐induced dissociation (CID), undergoes a facile loss of CO2 to produce an ion of m/z 189, which retains all the three sodium atoms of the precursor. The CID spectrum of this unusual m/z 189 ion shows significant peaks at m/z 167, 63 and 85. The enigmatic m/z 167 ion, which appeared to represent a loss of a 22‐Da neutral fragment from the precursor ion is in fact a fragment produced by the interaction of the m/z 189 ion with traces of water present in the collision gas. The change of the m/z 167 peak to 168, when D2O vapor was introduced to the collision gas of a Q‐ToF instrument, proved that such an intervention of water could occur even in collision cells of tandem‐in‐space mass spectrometers. The m/z 189 ion has such high affinity for water; it forms an ion/molecule complex even during the brief residence time of ions in collision cells of triple quadrupole instruments. The complex formed in this way then eliminates elements of NaOH to produce the ion observed at m/z 167. In an ion trap, the relative intensity of the m/z 167 peak increases with longer activation time even at the lowest possible collision energy setting. Similarly, the m/z 145 ion (which represents the sodium adduct of phenelenedisodium, formed by two consecutive losses of CO2 from the m/z 233 ion of meta‐ and para‐isomers) interacts with water to produce a fragment ion at m/z 123 for the sodium adduct of phenylsodium. Other uncommon ions that originate also from water/ion interactions are observed at m/z 85 and 63 for [Na3O]+ and [Na2OH]+, respectively. Tandem mass spectrometric experiments conducted with appropriately deuterium‐labeled compounds confirmed that the proton required for the formation of the [Na2OH]+ ion originates from traces of water present in the collision gas and not from the ring protons of the aromatic moiety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Compounds C6H5X(X ? F, Cl, Br, NO2, CN, OCH3) have been studied under chemical ionization conditions with ammonia as reagent gas. A pulsed electron beam and time resolved ion collection has allowed the determination of the reaction leading to the formation of [C6H5NH3]+ (m/z 94). [NH4]+ reacts with C6H5X(X ? F, Cl, Br) to yield m/z 94 but C6H5X (X ? CN, NO2) forms this ion only by reactions involving either [NH3]+ or [C6H5X]+. C6H5OCH3 does not form m/z 94.  相似文献   

10.
A novel labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) coupling to liquid chromatography with electrospray ionization mass spectrometry for the detection of carbohydrates from the derivatized rape bee pollen samples is reported. Carbohydrates are derivatized to their bis-NMP-labeled derivatives. Derivatives showed an intense protonated molecular ion at m/z [M+H]+ in positive-ion detection mode. The mass-to-charge ratios of characteristic fragment ions at m/z 473.0 could be used for the accurately qualitative analysis of carbohydrates. This characteristic fragment ion is from the cleavage of C2–C3 bond in carbohydrate chain giving the specific fragment ions at m/z [MH-C m H2m+1O m -H2O]+ for pentose, hexose and glyceraldehydes and at m/z [MH-C m H2m-1O m+1-H2O]+ for alduronic acids such as galacturonic acid and glucuronic acid (m = n ? 2, n is carbon number of carbohydrate). No interferences for all aliphatic and aromatic aldehydes presented in natural environmental samples were observed due to the highly specific parent mass-to-charge ratio and the characteristic fragment ions. The method, in conjunction with a gradient elution, offered a baseline resolution of carbohydrate derivatives on a reversed-phase Hypersil ODS-2 column. The carbohydrates such as mannose, galacturonic acid, glucuronic acid, rhamnose, glucose, galactose, xylose, arabinose and fucose can successfully be detected.  相似文献   

11.
Mass spectral fragmentations of two cyclopentane, eight cyclohexane and four norbornane/one 1,3-amino alcohols were studied under electron ionization (EI) by low-resolution, high-resolution, metastable ion analysis and collision-induced dissociation (CID) techniques. All stereoisomeric compounds gave rise to identical 70 eV EI mass spectra. However, the spectra of positional isomers clearly differed. The main fragmentation pathway for the saturated compounds began as an α-cleavage reaction with respect to the nitrogen atom. For the norbornene compounds a retro-Diels—Alder reaction was favoured. Relative to the aminomethyl-substituted compounds the fragmentation patterns for the compounds having the amino group connected directly to the ring were more complicated. The chemical ionization (CI) mass spectra were recorded using ammonia, isobutane, methane, dichloromethane and acetone as reagent gas. From the norbornane/One compounds the di-exo isomers decomposed more easily than the di-endo isomers with most of the reagent gases used. Differences between stereoisomers were observed directly only under methane CI. The decomposition products of the [M + H]+ ions generated under ammonia and isobutane CI were studies by recording their CID mass spectra. These spectra allowed the differentiation of the stereoisomers, at least to some extent.  相似文献   

12.
Mass spectra of 2-hydroxydiphenylmethane and its derivatives are characterized in the upper mass region by an abundant ion m/z 165. Metastable ion measurements reveal that this ion is formed from the molecular ion of the parent compound by elimination of H2O and hydrogen. A fluorenyl cation structure is proposed for this ion on the basis of identity of collision induced mass analyzed ion kinetic energy spectra of ion m/z 165 generated from 2-hydroxydiphenylmethane and from fluorene. Four different pathways of formation of a fluorenyl cation are discussed. The contribution of each of these to the genesis of fragment m/z 165 was monitored in a reversed geometry instrument by measuring the first fragmentation in the first field free region and the second fragmentation in the second field free region.  相似文献   

13.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Platelet activating factor (PAF) is a potent lipid mediator that is involved in many important biological functions, including platelet aggregation and neuronal differentiation. Although an ELISA assay has been used to measure PAF levels, it cannot distinguish between its isoforms. To achieve this, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been used instead. However, isobaric lysophosphatidylcholine (lyso PC), which is often present in large amounts in complex biological samples and has similar retention times in many LC conditions, can affect the accurate measurement of PAF. The present study examined the fragmentation behavior of major PAF and lyso PC during various MS/MS conditions. Fragment ions at m/z 184 and at m/z 104 were abundantly observed from MS/MS of lyso PCs. PAF provided a dominant fragment ion at m/z 184, but a fragment ion at m/z 104 was almost never produced, regardless of the collision energy. Thus, the two fragment ions at m/z 184 and m/z 104 were used to accurately measure PAF levels. First, the fragment ion at m/z 184 and the retention time of PAF in LC-MS/MS were used to identify and quantitate PAF. However, if there were small retention time shifts, which are common in multiple sample runs, and lipid composition in a sample is very complicated, the fragment ion at m/z 104 was used to confirm whether the fragment ion at m/z 184 belonged to PAF. This novel method accurately determined the major PAF (C16:0 PAF, C18:0 PAF, and C18:1 PAF) levels in human plasma.  相似文献   

16.
The spectra of five pharmacologically interesting substituted pyrazolo[1,2-a][1,2,4]triazole hydroiodides were measured under electron and chemical ionization. In the electron ionization spectra, in addition to the intense molecular ion peak of the free base (M+*), there was also a relatively intense molecular ion peak of the hydroiodide form, which is unusual since the hydroiodides are rarely so stable. The phenylimino and phenylamino substituents of the triazole ring affected the fragmentation behaviour of the compounds very much. The chemical ionization reagent gases used in this work were methane, isobutane, deuterated ammonia and acetone. In all the cases practically only [M+H]+ ions were observed, the only exception being acetone which also gave rise to intense [M+C2H3O]+ and [M+C3H7O]+ adduct ions. None of the reagent gases used was able to cause any fragmentation.  相似文献   

17.
Further studies have demonstrated that the site-specific hydrogen transfer process involved in the formation of the m/z 145 anion of β-hydroxyamine pentafluoropropionate (PFP) derivatives observed under electron capture negative ion chemical ionization conditions occurs when the two functional groups are separated by up to five carbon atoms. Deuterium labelling has established that the site specificity, transfer of a hydrogen atom from the carbon adjacent to nitrogen to the OPFP group, is maintained in 4-amino-butan-1-ol-N, O-(PFP)2. The corresponding PFP derivatives of the N-methylaminoalkanol-(PFP)2 derivatives lack the m/z 145 species with m/z 163, [OPFP]? being the base anion. Substitution of alkyl groups on the carbon adjacent to oxygen results in a diminution of the ion intensity at m/z 145. with a marked increase in the intensity of m/z 144. The formation of the m/z 145 and 144 anions to proposed to proceed through the intervention of a fluoride ion-molecule complex as outlined in Scheme 1 with the product ion distribution dependent on which of the two pathways is preferred.  相似文献   

18.
Ion-neutral complexes, well attested as intermediates in the expulsion of alkenes from M+? and MH+ ions from primary alkyl phenyl ethers, are shown to intervene in the decomposition of the MH+ ion of a secondary alkyl phenyl ether, (CD3)2CHOPh. Chemical ionization (CI) (methane reagent gas)-mass-analysed ion kinetic energy spectroscopy (MIKES) shows ions of both m/z 96 and 97, indicating that the proton deposited by the CI reagent exchanges with the methyl deuterium atoms. The ratio of daughter ion intensities, as well as the proportions of ions of m/z 95, 96 and 97 from the MH+ of CD3CH2CD2OPh, agree with predictions based on the gas-phase solvolysis mechanism, in which [i-Pr+ PhOH] complexes form from the protonated parent via simple bond heterolysis. An alternative mechanism, elimination-readdition, would proceed via [propene PhOHD+] complexes. This latter mechanism predicts a ratio of daughter ion intensities that is very different from gas-phase solvolysis and which disagrees with experiment. The elimination-readdition pathway is effectively ruled out, while the gas-phase solvolysis mechanism is reinforced.  相似文献   

19.
Optimization of the operating conditions for desorption chemical ionization (D/CI) mass spectrometry has been evaluated on the production of molecular ion species as well as structurally informative fragment ion species with sucrose as a main model compound. Among various parameters examined, it was found that configuration and heating rate of the emitter wire were significantly concerned with the desorption efficiency, while chamber temperature played an important role on the control of the fragmentation process rather than the desorption process. Therefore, the conditions for optimal molecular ion species are quite opposed to those for optimal fragment ion species. The former can be achieved by the use of the highest heating rate combined with the lowest chamber temperature. Under the optimal operating conditions, a 20 ng sample of sucrose is adequate for recording a clear mass spectrum with good reproducibility, where [M·NH4]+ (m/z 360) is the base peak and the glycosyl ion [S·NH3]+ (m/z 180) also has moderate abundance (rel. int., 40%).  相似文献   

20.
A pre-column derivatization method for the sensitive determination of aldehydes using the tagging reagent 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl carbonylhydrazine (DBCEEC) followed by high-performance liquid chromatography with fluorescence detection and APCI-MS identification has been developed. The chromophore of fluoren-9-methoxy-carbonylhydrazine (Fmoc-hydrazine) reagent was replaced by 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl functional group, which resulted in a sensitive fluorescence tagging reagent DBCEEC. DBCEEC could easily and quickly labeled aldehydes. The maximum excitation (300 nm) and emission (400 nm) wavelengths did not essentially change for all the aldehyde derivatives. Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z [M + (CH2)n]+ in positive-ion mode (M: molecular weight of DBCEEC, n: corresponding aldehyde carbon atom numbers). The collision-induced dissociation of protonated molecular ion formed fragment ions at m/z 294.6, m/z 338.6 and m/z 356.5. Studies on derivatization demonstrated excellent derivative yields in the presence of trichloroacetic acid (TCA) catalyst. Maximal yields close to 100% were observed with a 10 to 15-fold molar reagent excess. Separation of the derivatized aldehydes had been optimized on ZORBAX Eclipse XDB-C8 column with aqueous acetonitrile as mobile phase in conjunction with a binary gradient elution. Excellent linear responses were observed at the concentration range of 0.01-10 nmol mL−1 with coefficients of >0.9991. Detection limits obtained by the analysis of a derivatized standard containing 0.01 nmol mL−1 of each aldehyde, were from 0.2 to 1.78 nmol L−1 (at a signal-to-noise ratio of 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号