首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several copolymers of 2-hydroxyethyl methacrylate (HEMA) with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA), and methyl methacrylate (MMA) were prepared at 70°C in nitrogen atmosphere using 0.2% (w/v) benzoyl peroxide as initiator. The copolymer composition was evaluated by estimation of hydroxyl group in the copolymers. Intrinsic viscosity of HEMA–EA, HEMA–BA, and HEMA–MMA copolymers was determined at 35°C in dimethyl formamide. Molecular weight distribution of copolymer samples was evaluated by gel permeation chromatography. Thermal behavior of the copolymers was investigated by dynamic thermogravimetry. Thermal stability decreased on increasing HEMA content in MA, EA, and BA copolymers. However, a reverse trend was observed in HEMA–MMA copolymers.  相似文献   

2.
Copolymers of vinylpyrrolidone-p-tert-butylphenyl methacrylate (VP-MBPh) of several compositions were prepared by polymerization in benzene at 50°C using α′α′-azobisisobutyronitrile as initiator. Three of the copolymers were fractionated. Number-average molecular weights of fractionated samples were determined by osmotic pressure in benzene or 2-propanol. Kuhn–Mark–Houwink relations were established in benzene, chloroform, and 2-propanol. From the relation between M n and the intrinsic viscosity (η), it appears that these random copolymers behave as predicted by the theory for flexible polymers. Abnormal viscometric behavior shown by one of the copolymers in nitromethane at 29°C (the theta temperature) is discussed. The Stockmayer–Fixman semiempirical method was used for estimating unperturbed dimensions from viscosity data obtained in chloroform, a good common solvent. Values of the viscosity parameter Kθ increase with the content of p-tert-butylphenyl methacrylate. In general, experimental Kθ values are higher than those calculated for the homopolymers. Excluded-volume parameters are estimated and discussed in relation to repulsive interactions between unlike monomer units.  相似文献   

3.
Peroxidized polypropylene has been used as a heterofunctional initiator for a two-step emulsion polymerization of a vinyl monomer (M1) and vinyl chloride with the production of vinyl chloride block copolymers. Styrene, methyl-, and n-butyl methacrylate and methyl-, ethyl-, n-butyl-, and 2-ethyl-hexyl acrylate have been used as M1 and polymerized at 30–40°C. In the second step vinyl chloride was polymerized at 50°C. The range of chemical composition of the block copolymers depends on the rate of the first-step polymerization of M1 and the duration of the second step; e.g., with 2-ethyl-hexyl acrylate block copolymers could be obtained with a vinyl chloride content of 25–90%. The block copolymers have been submitted to precipitation fractionation and GPC analysis. Noteworthy is the absence of any significant amount of homopolymers, as well as poly(M1)n as PVC. The absence of homo-PVC was interpreted by an intra- and intermolecular tertiary hydrogen atom transfer from polypropylene residue to growing PVC sequences. The presence of saturated end groups on the PVC chains is responsible for the improved thermal stability of these block polymers, as well as their low rate of dehydrochlorination (180°C). Molecular aggregation in solution has been shown by molecular weight determination in benzene and tetrahydrofuran.  相似文献   

4.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

5.
As in the case of vinylhydroquinone (I), its alkyl-substituted derivative, 2-methyl-5-vinylhydroquinone (II) was found to copolymerize with methyl methacrylate by tri-n-butylborane in cyclohexanone at 30°C. II was prepared from the O,O′-bisether compound, 2-methyl-5-vinyl-O,O′-bis(1′-ethoxyethyl)hydroquinone (III). The monomer reactivity ratios (M2 = II) were determined to be r1 = 0.37 and r2 = 0. No homopolymerization proceeded under the same conditions. Ordinary free-radical initiators, such as azobisisobutyronitrile and benzoyl peroxide, were not effective in the homopolymerization of II. 1:1 Copolymers were obtained from II and maleic anhydride by using tri-n-butylborane as an initiator. The copolymers exhibited no definite melting range and decomposed at 370–375°C endothermally (DSC). The polymerization behavior of III was also investigated. Although tri-n-butylborane did not initiate the homopolymerization of the monomer, azobisisobutyronitrile was capable of initiating the homopolymerization and copolymerization of III. The monomer reactivity ratios (M1 = styrene) were determined to be r1 = 0.83 and r2 = 0.18. The ratios gave the following Q and e values; Q = 0.15 and e = ?2.2.  相似文献   

6.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

7.
Polymeric UV absorbers have been prepared by free-radical solution copolymerization at 75°C of methyl methacrylate and 2-hydroxy-4-methacryloyloxybenzophenone monomers at low conversion (around 10%). The composition of the copolymers was determined by UV, IR, and NMR studies. The molecular weight was estimated by GPC. The reactivity ratios were determined by several methods. Viscosity was used to study the effect of copolymer composition and solvents. The copolymers were also analyzed by TGA and DSC, and DSC was used to study the effect of copolymer composition on Tg.  相似文献   

8.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

9.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

10.
Copolymers of 4-cinnmoylphenyl methacrylate (CPMA) with glycidyl methacrylate were synthesized in methyl ethyl ketone solution using benzoyl peroxide as initiator at 70 ± 1°C. They were characterized by UV, IR, 1H-NMR, and 13C-NMR spectra. Their compositions were determined by 1H-NMR technique. The monomer reactivity ratios were determined by the Fineman-Ross and Kelen-Tüdös methods. The molecular weights ([Mbar]w and [Mbar]n) of the polymers were determined by GPC technique. Thermogravimetric analysis of the copolymers were carried out in air. The Tg of the polymers were determined by differential scanning calorimetry. The photocrosslinking properties of the homo and copolymers were also discussed.  相似文献   

11.
The influence of side-chain crystallinity on the glass transition temperatures of selected copolymers was investigated. The copolymers were selected, in part, from those whose crystallinity was treated in the preceding paper. These included the lower amorphous acrylate esters, such as methyl, ethyl, n-butyl, and 2-ethylhexyl acrylates, together with methyl methacrylate and acrylonitrile, each copolymerized with n-octadecyl acrylate over the range of composition. The decline in the glass transition temperature was linear with increasing weight fraction of n-octadecyl acrylate for all systems in the composition range where the copolymers were essentially amorphous. The extrapolated Tg for the amorphous state of poly(n-octadecyl acrylate), and for amorphous poly(oleyl acrylate), was close to ?111°C. This coincided with a value previously obtained by an extrapolation of data on homologs. Beyond a critical fraction of octadecyl acrylate (0.3 to 0.5), developing side-chain crystallinity in n-octadecyl acrylate raised the glass temperature steadily for all systems, up to a value of 17-C, obtained for the crystalline homopolymer. Crystallinity did not develop in stiff copolymers until Tg was about 30°C below the melting point of the most perfect crystals. In compositionally heterogeneous copolymers incorporating vinyl stearate, blocks of crystalline units appeared to be dispersed in a glassy matrix of amorphous co-units. An empirical equation was derived which fitted the experimental data for random copolymers, over all composition ranges, with fair accuracy.  相似文献   

12.
MSBSM five-block copolymers where B stands for butadiene, S for styrene, and M for either methyl methacrylate (MMA) or tert-butyl methacrylate (tBMA) have been synthesized by sequential anionic polymerization in an apolar solvent by using a difunctional anionic initiator derived from 1,3-diisopropenylbenzene. These block copolymers show improved mechanical properties and an extended service temperature compared to traditional SBS thermoplastic elastomers. Upon hydrolysis and further neutralization of the PolytBMA end-blocks, the upper glass transition temperature (Tg) of the five-block copolymers has been raised up to about 150°C. A further increase in this service temperature (up to ca. 160°C) has resulted from the blending of sPMMA-SBS-sPMMA five-block copolymers with isotactic poly(methacrylate) (iPMMA), due to the formation of a stereocomplex. The tensile properties of these modified five-block copolymers have remained essentially unchanged. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
This investigation reports the atom transfer radical copolymerization (ATRcP) of glycidyl methacrylate (GMA) and 2‐ethylhexyl acrylate (EHA). Poly(glycidyl methacrylate) (PGMA) has easily transformable pendant oxirane group and poly(2‐ethylhexyl acrylate) (PEHA) has very low Tg. They are the important components of coating and adhesive materials. Copolymerization of GMA and EHA was carried out in bulk and in toluene at 70 °C at different molar feed ratios using CuCl as catalyst in combination with 2,2′‐bypyridine (bpy) as well as N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. The molecular weight (Mn) and the polydispersity index (PDI) of the polymers were determined by GPC analysis. The molar composition of the copolymers was determined by 1H NMR analysis. The reactivity ratios of GMA (r1) and EHA (r2) were determined using Finemann‐Ross and Kelen‐Tudos linearization methods and those had been compared with the literature values for conventional free radical copolymerization. The thermal properties of the copolymers were studied by DSC and TGA analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6526–6533, 2009  相似文献   

14.
《Analytical letters》2012,45(17):2693-2707
The micellization behavior of novel tertiary amine methacrylate-based ABA type triblock copolymers formed by poly[2-(dimethylamino)ethyl methacrylate] [PDMA] middle block and poly[2-(diethylamino)ethyl methacrylate] [PDEA] or poly[2-(diisopropylamino)ethyl methacrylate] [PDPA] side blocks, PDPAm-b-PDMAn-b-PDPAl, and PDEAm-b-PDMAn-b-PDEAl was investigated. Both types of triblock copolymers were water-soluble and had potential for various applications due to their self-assembled and the bottom-up nanoscale micellar construction. The micellar aggregations of the triblock copolymers in aqueous solutions with varying comonomer ratios, molecular weights, temperatures, and pH values were investigated by small-angle X-ray scattering and dynamic light scattering. Compact micellar aggregations were obtained as 0.5 weight percent solutions at 20–21°C and pH 8.67 to 9.05, and characterized as polydispersed spherical core-shells. One group of triblock copolymer micelles had PDPA-cores with radii from 18 to 21 Å and PDMA-shell thicknesses of 89–105 Å, whereas the other group had PDEA-core spherical micelles with core radii of 60–62 Å and a PDMA-shell thicknesses of 64–66 Å.  相似文献   

15.
N-Vinyl-2-pyrrolidone(I) has been copolymerized with vinylferrocene(II) and vinylcyclopentadienyl manganese tricarbonyl(III) in degassed benzene solutions with the use of azobisisobutyronitrile (AIBN) as the initiator. The polymerizations proceed smoothly, and the relative reactivity ratios were determined as r1 = 0.66, r2 = 0.40 (for copolymerization of I with II, M1 defined as II) and r1 = 0.14 and r2 = 0.09 (for copolymerization of I with III, M1 defined as III). These copolymers were soluble in benzene, THF, chloroform, CCl4, and DMF. Molecular weights were determined by viscosity and gel-permeation chromatography studies (universal calibration technique.) The copolymers exhibited values of M?n between 5 × 103 and 10 × 103 and M?w between 7 × 103 and 17 × 103 with M?w/M?n < 2. Upon heating to 260°C under N2, copolymers of III underwent gas evolution and weight loss. The weight loss was enhanced at 300°C, and the polymers became in creasingly insoluble. Copolymers of vinylferrocene were oxidized to polyferricinium salts upon treatment with dichlorodicyanoquinone (DDQ) or o-chloranil (o-CA) in benzene. Each unit of quinone incorporated into the polysalts had been reduced to its radical anion. The ratio of ferrocene to ferricinium units in the polysalts was determined. The polysalts did not melt at 360°C and were readily soluble only in DMF.  相似文献   

16.
Polydimethylsiloxane (PDMS) block copolymers were synthesized by using PDMS macroinitiators with copper-mediated living radical polymerization. Diamino PDMS led to initiators that gave ABA block copolymers, but there was low initiator efficiency and molecular weights are somewhat uncontrolled. The use of mono- and difunctional carbinol–hydroxyl functional initiators led to AB and ABA block copolymers with narrow polydispersity indices (PDIs) and controlled number-average molecular weights (Mn's). Polymerization with methyl methacrylate (MMA) and 2-dimethylaminoethyl methacrylate (DMAEMA) was discovered with a range of molecular weights produced. Polymerizations proceeded with excellent first-order kinetics indicative of living polymerization. ABA block copolymers with MMA were prepared with between 28 and 84 wt % poly(methyl methacrylate) with Mn's between 7.6 and 35 K (PDI <1.30), which show thermal transitions characteristic of block copolymers. ABA block copolymers with DMAEMA led to amphiphilic block copolymers with Mn's between 9.5 and 45.7 K (PDIs of 1.25–1.70), which formed aggregates in solution with a critical micelle concentration of 0.1 g dm−3 as determined by pyrene fluorimetry experiments. Monocarbinol functional PDMS gave AB block copolymers with both MMA and DMAEMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1833–1842, 2001  相似文献   

17.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

18.
Statistical copolymers of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and tri(ethylene glycol) methyl ether methacrylate (MEO3MA) were synthesized by atom transfer radical polymerization (ATRP) providing copolymers with controlled composition and molecular weights ranging from Mn = 8,300–56,500 with polydispersity indexes (Mw/Mn) between 1.19 and 1.28. The lower critical solution temperature (LCST) of the copolymers increased with the mole fraction of MEO3MA in the copolymer over the range from 26 to 52 °C. The average hydrodynamic diameter, measured by dynamic light scattering, varied with temperature above the LCST. These two monomers were also block copolymerized by ATRP to form polymers with molecular weight of Mn = 30,000 and Mw/Mn from 1.12 to 1.21. The LCST of the block copolymers shifted toward the LCST of the major segment, as compared to the value measured for the statistical copolymers at the same composition. As temperature increased, micelles, consisting of aggregated PMEO2MA cores and PMEO3MA shell, were formed. The micelles aggregated upon further heating to precipitate as larger particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 194–202, 2008  相似文献   

19.
Radical copolymerizations of 2‐isothiocyanatoethyl methacrylate (ITEMA) and 2‐hydroxyethyl methacrylate (HEMA) or methacrylic acid (MAA) were examined, and fundamental properties of the obtained copolymers were investigated. The copolymerizations of various ITEMA/HEMA or ITEMA/MAA compositions proceeded effectively in THF or DMF by using 2,2′‐azobisbutyronitrile (AIBN) as an initiator, keeping the isothiocyanato groups and hydroxyl or carboxyl groups unchanged. Glass transition temperatures (Tg)s of poly(ITEMA‐co‐HEMA)s ranged from 68 to 100 °C, and they were thermally stable up to 200 °C. Meanwhile, Tgs of poly(ITEMA‐co‐MAA)s (ITEMA/MAA = 91/9, 76/24) were determined to be 91 and 109 °C, respectively. However, poly(ITEMA‐co‐MAA)s were thermally unstable, and significant weight loss was observed around 180 °C, which may be due to an addition of carboxyl groups to isothiocyanato groups followed by an elimination of COS to form amide structure in the copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5221–5229  相似文献   

20.
2-Hydroxypropyl methacrylate has been copolymerized with methyl acrylate, ethyl acrylate, n-butyl acrylate, and methyl methacrylate in bulk at 60°C using benzoyl peroxide as initiator. The compositions of copolymers have been determined by the estimation of the hydroxyl group by acetylation process. The copolymerization parameters have been determined by conventional scheme of copolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号