首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the cobalt (II)-dimethylglyoxime-NH3-NH4Cl (pH 9) system, tne complex Co(II)A2 exhibits a sensitive polarographic wave. The mechanism of this catalytic wave has been investigated by linear potential sweep voltammetry, cyclic voltammerty and anedic stripping voltammetry. The experimental evidences showed that a zero-valence “active cobalt” or its complex formed during the irreversible reduction of Co(II)A2, which is adsorbed on the mercury electrode surface, and simultaneously DMG is catalytically reduced by this “active cobalt”. The mechanism of this system with the conflicting explanations of a catalytic hydrogen wave or only adsorptive complex wave is discussed.  相似文献   

2.
A reduction current is obtained when an aqueous solution of copper and catechol is subjected to differential-pulse cathodic stripping voltammetry (d.p.c.s.v.) because of the reduction of copper(II)—catechol complex ions which adsorb onto the hanging mercury drop electrode (HMDE). The most likely form of the adsorbed complex ions is CuL2?2 (L being catechol). A.c. polarographic measurements showed that these complex ions adsorb more strongly onto the drop than free catechol ions. Monolayer adsorption density is obtained at 2.1 × 10?10 molecules/cm2, equivalent to a surface area of 78 A2 complex ion, which agrees well with the molecular surface area calculated from the bond lengths. Analytically useful currents are obtained at very low metal concentrations, such as in uncontaminated sea water. The possible interference by other trace metals, major cations, and organic complexing ligands is investigated. Competition for copper ions by natural organic complexing ligands is evident at low concentrations of catechol. Analysis of the dissolved copper concentration in sea water by d.p.c.s.v. at the HMDE (at neutral pH) compares favourably with the d.p.a.s.v. technique at a rotating disk electrode (at low pH) because of the shorter collection period and greater sensitivity.  相似文献   

3.
A systematic study of the adsorption and association of the cancerostatic drug actinomycin-C1 (ACT) at a hanging mercury drop electrode (HMDE) has been conducted using phase-sensitive a.c. voltammetry and cyclic voltammetry (CV). At all bulk concentrations, the adsorbed layer is transformed into a condensed film by the significant stacking forces acting between adjacent rings of the phenoxazone residues. The nucleation and growth mechanism is confirmed and the data are analysed using the Avrami equation. The adsorption parameters for the condensed film were evaluated at various pH values. In addition, the preparative electrochemical reduction of ACT was performed using the large-scale electrolysis and differential pulse polarography. The consequences for DNA interaction and membrane adsorption are discussed.  相似文献   

4.
The electrochemical behavior of lumazine (LMZ), an important antibacterial agent, has been studied at the hanging mercury drop electrode (HMDE). The nature of the process taking place at the HMDE was clarified. Its adsorption behavior at HMDE has been studied by using a.c and cyclic voltammetry (CV). Both the molecule and its reduced product appeared to be adsorbed at the surface of the electrode. Controlled adsorptive accumulation of LMZ on the HMDE provides the basis for the direct stripping measurement of that compound in the subnanomolar concentration level. Experimental and instrumental parameters for the quantitative determination were optimized. Phase-selective a.c voltammetry provided the best signal and gave a detection limit of 0.15 μg L–1 (9.0 × 10–10 mol/L) LMZ in aqueous solution. Molecules or ions which may interfere were studied.  相似文献   

5.
Summary Controlled adsorptive accumulation of orotic acid (vitamin B13) at the hanging mercury drop electrode (HMDE) provides the basis for the direct stripping measurement of that compound in nanomolar concentration. Differential pulse voltammetry applied to a sample at pH 11.20 fixed in NaOH has a detection limit of 5.0 × 10–10 mol/l of orotic acid (with 3 min of preconcentration).The cathodic stripping response is evaluated with respect to experimental parameters such as preconcentration time, preconcentration potential, bulk concentration and other parameters. Cathodic stripping voltammetry can be proposed for the determination of the orotic acid, the reproducibility of this method was studied.
Cathodic-Stripping Voltammetrie von Orotsäure (Vitamin B13) an der hängenden Quecksilbertropfelektrode
  相似文献   

6.
When the hanging mercury drop electrode (HMDE) is placed in a solution which is 0.1 M in ammonia and 0.1 M in ammonium chloride and about 5 to 10×10?4M in cobalt(III)-hexamine or cobalt(II) chloride and in very small concentrations of bovine serum albumin (BSA), the protein is slowly adsorbed. When the adsorption is highly incomplete and the HMDE is kept for 30 s at about ?1.05 V vs. SCE, “active cobalt’ is deposited as a complex (Co(0)BSA). This is anodically oxidized at about 0.0 V to unstable Co(I)BSA). When the electrode is then rapidly (500 mV s?1) cathodized, a catalytic hydrogen current (ic) with peak at circa ?1.45 V is observed. In this way it is even possible to detect and estimate BSA in concentrations of the order of 10?12M. A detailed study has been made of the characteristics of ic under several conditions. “Active cobalt” on the HMDE does not affect Brdi?ka currents. Cystine and cysteine also yield the catalytic hydrogen current ic under the same conditions as does BSA.  相似文献   

7.
The electrochemical characteristics of azinphos-ethyl (APE) have been determined by means of electrochemical techniques such as cyclic voltammetry (CV) and adsorptive stripping voltammetry (ASV) at a hanging mercury drop electrode (HMDE) over a wide range of pH from 2.0 to 8.0. The cyclic voltammograms demonstrate the adsorption of this compound at the mercury electrode. A systematic study of the various operational parameters that affect the stripping response was carried out by differential pulse voltammetry (DPV). With a preconcentration potential of −0.6 V and a 60 s preconcentration time, the limit of detection was 5.42 × 10−9 M, and the relative standard deviation (n = 5) was 2.7 % at concentration level of 6.45 × 10−7 M APE. The degree of interference from diverse ions and some other pesticides on the differential pulse stripping signal for APE was evaluated. Finally, the method was applied to the determination of APM in spiked soil, tap water, and treated wastewater. The text was submitted by the author in English.  相似文献   

8.
Bovine serum albumin (BSA), as well as completely reduced BSA denoted by P (SH)35, are adsorbed on the hanging mercury drop electrode (HMDE) from alkaline buffer solutions. When time is allowed, a monolayer is adsorbed from very dilute (10?9M) BSA solutions in ammoniacal and borate buffers. With a monolayer of adsorbed protein the voltammograms at the HMDE are then identical in a given ammoniacal or borax buffer containing cobalt(III) or (II) and different BSA concentrations. Voltammograms of P (SH)35 are virtually identical with those of native BSA. At the HMDE the second Brdi?ka current is proportional to concentration of cobalt(III) or (II) and the first current nearly so. Incompletely or completely adsorbed BSA or P (SH)35 is not desorbed on keeping the HMDE for one hour in ammonia buffers. An incomplete layer of adsorbed BSA or P (SH)35 is relatively rapidly desorbed at ?1.6 V (vs. SCE) and a complete film at ?1.65 V, some desorption occurring at ?1.6 V. Upon desorption, the second Brdi?ka current decreases faster than the first one; this is particularly striking in 1 M ammonia buffer. The rate of desorption is increased by calcium chloride, but the rate of adsorption is not, or only slightly, increased in the presence of calcium. Incomplete adsorption occurs at ?1.60 V (vs. SCE) and no adsorption at ?1.65 V. Indications are obtained that “presodium currents” yield a slight plateau at ?1.67 to ?1.70 V, the plateau currents being attributed to adsorbed BSA, while unadsorbed BSA yields catalytic currents without a plateau, the currents merging with the residual one of the buffer. Calcium chloride greatly increases the presodium currents. From many kinetic data obtained at the dropping mercury electrode (DME) and from results at the HMDE it is concluded that, depending on the BSA concentration, Brdi?ka currents at the DME are partly of a kinetic and partly of a surface adsorption nature and partly diffusion-controlled. Adsorption equilibrium is not attained at the DME at 25° at concentrations of BSA smaller than 10?6M.  相似文献   

9.
Dias Filho NL  do Carmo DR 《Talanta》2006,68(3):919-927
In this work, a hydrophilic clay, Na-montmorillonite from Wyoming, USA, was rendered organophilic by exchanging the inorganic interlayer cations for hexadecyltrimethylammonium ions (HDTA), with the formulae of [(CH3)3N(C16H33)]+ ion. Based on fact that organo-clay has high affinities for non-ionic organic molecules, 1,3,4-thiadiazole-2,5-dithiol was loaded on the HDTA-montmorillonite surface, resulting in the 1,3,4-thiadiazole-2,5-dithiol-HDTA-montmorillonite complex (TDD-organo-clay).The following properties of TDD-organo-clay are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II).The main point of this paper is the construction of a selective sensor, a carbon paste electrode modified with TDD-organo-clay, its properties and its application to the determination of mercury(II) ions, as this element belongs to the most toxic metals. The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination.  相似文献   

10.
Cyclic voltammetry was used to explore the adsorption behavior of secnidazole on a hanging mercury drop electrode (HMDE). The effects of various operational parameters on the accumulation behavior of the adsorbed species were tested. Thus, a sensitive stripping voltammetry procedure for the determination of secnidazole with an adsorptive accumulation on the surface of HMDE has been developed. Measurements were taken by differential-pulse voltammetry after determination of the optimum conditions. The linear concentration range was 1 x 10(-8)-1 x 10(-7) s when using a 120 s preconcentration at -0.1 V vs. Ag/AgCl in acetate buffer of pH 4.0. The detection limit of secnidazole was 5 x 10(-9) M. The precision, expressed by the coefficient of variation, was 2.5% (n = 10) at a concentration of 1 x 10(-7) m. The method was successfully applied to the analysis of secnidazole in urine.  相似文献   

11.
Dalvi AA  Satpati AK  Palrecha MM 《Talanta》2008,75(5):1382-1387
Characteristics of the adsorption/electro-reduction of Pt/Rh hexamethylene tetramine (HMTA) complex on static mercury drop electrode surface were studied. Cyclic voltammetry was carried out to get the insight about the mechanistic behaviour of the catalytic current obtained in the voltammetric scan of Pt/Rh HMTA complex in acidic solution. Adsorptive stripping voltammetry using HMTA as the complexing agent was found to be highly sensitive method for the determination of Pt/Rh. Voltammetric measurements were carried out using hanging mercury drop electrode (HMDE) as the working electrode, a glassy carbon rod as the counter and an Ag/AgCl/KClsaturated as the reference electrode. Various electrochemical parameters like deposition potential, deposition time, concentration of the ligand, supporting electrolyte etc. were optimized. The detection limit of Pt and Rh was found to be 4.38 pML−1 and 2.80 pML−1, respectively for the deposition time of 30 s. Simultaneous determination of Pt(II) and Rh(III) in water samples was possible. The method was found to be free from the commonly occurring interfering ions such as Cu(II), Cd(II), Zn(II), Pb(II), Cr(III), Cr(VI), Fe(III), Fe(II), Ni(II) and Co(II). Spike recovery tests for both Pt and Rh in tap water and sea water samples were also carried out. The method has been verified by analyzing certified reference material (WMG-1).  相似文献   

12.
The electrochemical behavior of lumazine (LMZ), an important antibacterial agent, has been studied at the hanging mercury drop electrode (HMDE). The nature of the process taking place at the HMDE was clarified. Its adsorption behavior at HMDE has been studied by using a.c and cyclic voltammetry (CV). Both the molecule and its reduced product appeared to be adsorbed at the surface of the electrode. Controlled adsorptive accumulation of LMZ on the HMDE provides the basis for the direct stripping measurement of that compound in the subnanomolar concentration level. Experimental and instrumental parameters for the quantitative determination were optimized. Phase-selective a.c voltammetry provided the best signal and gave a detection limit of 0.15 microg L(-1) (9.0 x 10(-10) mol/L) LMZ in aqueous solution. Molecules or ions which may interfere were studied.  相似文献   

13.
《Analytical letters》2012,45(8):1411-1423
Abstract

The electrochemical behaviour of the bilirubin in many kinds of supporting electrolytes on a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE) was investigated by means of anodic or cathodic differential pulse voltammetry. The influences of different methods of pre-treatment of the glassy carbon electrode was also discussed. In Na2B4.O7-KH2PO4 buffer solution, the linear range was 2×10?9-1×10?9 mol/l and the detection limit was 3.3×10?9 mol/l by anodic differential pulse voltammetry at GCE. A linear relationship holds between the peak current and the concentration of bilirubin in a concentration range of 1×10?9-4×10?7 mol/l with good precision and accuracy, and the limit of detection was 2×10?10 mol/l, when cathodic differential pulse adsorption voltammetry at HMDE was used.  相似文献   

14.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

15.
A new sorbent S-benzyldithiocarbazate (SBDTC) modified activated carbon (AC-SBDTC) was prepared and studied for preconcentration for trace mercury(II) prior to inductively coupled plasma atom emission spectrometry (ICP-AES). The experimental conditions were optimised with respect to different experimental parameters using both batch and column procedures in detail. The optimum pH value for the separation of Hg(II) on the new sorbent was 3, while the adsorption equilibrium was achieved in less than 5?min. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 5?mL of 0.25?mol?L?1 of HCl and 2% CS(NH2)2. Common coexisting ions did not interfere with the determination. The maximum static adsorption capacity of the sorbent under optimum conditions was found to be 0.55?mmol?g?1. The detection limit of the present method was found to be 0.09?ng?mL?1, and the relative standard deviation (RSD) was lower than 2.0%. The procedure was validated by analysing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and preconcentration of trace Hg(II) from the natural water samples yielding 80-fold concentration factor.  相似文献   

16.
A method using commercially available sputtered bismuth screen‐printed electrodes (BispSPE), as substitute to mercury electrodes, for the determination of trace Pb(II) and Cd(II) ions in drinking well water samples collected in a contaminated area in The Republic of El Salvador by means of differential pulse anodic stripping voltammetry (DPASV) has been proposed. The comparable detection and quantification limits obtained for both BispSPE and hanging mercury drop electrode (HMDE), together with the similar results with a high reproducibility obtained in these water samples analyses recommend the applicability of BispSPE for the determination of low level of metal concentrations in natural samples.  相似文献   

17.
The process of electroreduction of cobalt(II) in thiocyanate solutions at mercury electrodes has been investigated by cyclic voltammetric, chronoamperometric and polarographic methods. The influences of pH, the concentrations of Co(II) and SCN?, and the reduction products of SCN?, CN? and S2? on the reduction waves are described. The polarographic pre-wave is an autocatalytic in nature. A mechanism involving an initial reduction of Co(II)—SCN? at a mercury electrode followed by the chemical reduction of thiocyanate ion with the electroreduced metallic cobalt, and taking into account cyanide, sulfide, and hydroxide ions, the latter being produced by the hydrolysis of cyanide ion, is presented. Cobalt sulfide adsorbed at the electrode surface stimulates further reduction of Co(II)—CN? and —SCN? complexes, and depresses the interfering influence of Co(OH)2, which is reductively desorbed from the electrode surface with giving rise to an additional peak near ?1.08 V vs. SCE.  相似文献   

18.
Advantage is taken of the property that activated charcoal particles dispersed in a solution accumulate on the HMDE. Alternating current voltammetry is used to determine the surface area of carbon sticking to the electrode on which redox processes may proceed. The surface area of charcoal determined in this way allowed us to estimate the contents of electroactive oxygen in three types of carbon samples. It has been found that the capability of carbon particles to stick to the mercury surface increases with growing oxygen content.The electroactive forms of oxygen bonded to the carbon surface undergo reduction in a peak at about −0.5 V. The second reduction peak, at about −1.6 V, is connected with hydrogen evolution on the charcoal-covered part of the electrode. Detachment of the charcoal particles from the mercury surface results in decay of the H3O+ reduction current. Photographs provide evidence of the efficiency of accumulation of the carbon particles in dependence on the type of sample tested and the HMDE potential as well as phenomena accompanying “desorption”.  相似文献   

19.
The application of electrodes modified by tri-n-octylphosphine oxide (TOPO) to the determination of uranium in aqueous solutions is investigated. Selective preconcentration of uranium(VI) by chemical reaction with the modifying molecule is followed by cyclic voltammetry. A hanging mercury drop electrode (HMDE) can be modified easily but the reproducibility of results is not good. When a TOPO-modified glassy carbon electrode is used, uranium(VI) can be preconcentrated from stirred solutions, and the cathodic voltammograms show an increase of current or a peak at about -0.75 V vs. SCE, depending on the uranium concentration of the solution. The effects of preconcentration time, pH and electrode potential during the preconcentration are discussed. The detection limit is in the 10-9 M range for 45 min of preconcentration. The procedure is fairly selective for uranyl ions, but oxidizing agents interfere. Some tests on sea water are reported.  相似文献   

20.
Electrochemistry of membrane proteins is complicated by the fact that the studied substances are poorly soluble or insoluble in aqueous environment. The solubilization of proteins using surfactants (detergents) affects the electrochemical analysis or even renders it impossible. In the present study, the electrochemistry of the transmembrane protein Na+/K+‐ATPase (NKA) and its water‐soluble isolated cytoplasmic loop C45 is described. The proteins were studied using adsorptive transfer cyclic voltammetry and square‐wave voltammetry on basal‐plane pyrolytic graphite electrode (PGE) as well as constant‐current chronopotentiometric stripping analysis on hanging mercury drop electrode (HMDE). The nonionic surfactant octaethylene glycol monododecyl ether (C12E8) was used for NKA solubilization. Under these conditions the oxidation currents of Tyr and Trp (peak Y: +0.55 V and peak W: +0.7 V, vs. Ag/AgCl/3 M KCl) and catalytic reduction currents (peak H: ?1.8 V) of NKA and C45 loop can be observed. Using the experimental procedures suggested in this study, we were able to investigate the oxidation, reduction and adsorption of NKA and C45 at femtomole level without the necessity of labeling by electroactive markers or techniques based on protein immobilization within the lipid bilayer attached to the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号