首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By making use of Matula numbers, which give a 1-1 correspondence between rooted trees and natural numbers, and a Gödel type relabelling of quantum states, we construct a bijection between rooted trees and vectors in the Fock space. As a by product of the aforementioned correspondence (rooted trees $\leftrightarrow $ ? Fock space) we show that the fundamental theorem of arithmetic is related to the grafting operator, a basic construction in many Hopf algebras. Also, we introduce the Heisenberg–Weyl algebra built in the vector space of rooted trees rather than the usual Fock space. This work is a cross-fertilization of concepts from combinatorics (Matula numbers), number theory (Gödel numbering) and quantum mechanics (Fock space).  相似文献   

2.
3.
This work presents multi‐state multi‐reference Møller–Plesset second‐order perturbation theory as a variant of multi‐reference perturbation theory to treat electron correlation in molecules. An effective Hamiltonian is constructed from the first‐order wave operator to treat several strongly interacting electronic states simultaneously. The wave operator is obtained by solving the generalized Bloch equation within the first‐order interaction space using a multi‐partitioning of the Hamiltonian based on multi‐reference Møller–Plesset second‐order perturbation theory. The corresponding zeroth‐order Hamiltonians are nondiagonal. To reduce the computational effort that arises from the nondiagonal generalized Fock operator, a selection procedure is used that divides the configurations of the first‐order interaction space into two sets based on the strength of the interaction with the reference space. In the weaker interacting set, only the projected diagonal part of the zeroth‐order Hamiltonian is taken into account. The justification of the approach is demonstrated in two examples: the mixing of valence Rydberg states in ethylene, and the avoided crossing of neutral and ionic potential curves in LiF. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
The spin‐free wave function due to Fock (Zh Eksp Teor Fiz, 1940, 10, 961) is re‐examined with a stress on the reduced density matrix (RDM) theory. The key notion of the Fock approach is the cyclic symmetry of wave functions. It is a specific algebraic identity involving transpositions of numbers taken from two different columns of the corresponding Young tableau. We show first how to construct symmetry adapted states by accounting for high‐order cyclic symmetry conditions. For Young's projectors, it gives a new expression including nothing but antisymmetrizers. Next, transforming the Fock spin‐free state by a duality operator (the star operator in exterior algebra), we arrive at the representation closely related to spin‐flip models. In such spin‐flip models, a coupling operator is the basic object for which we show that the cyclic symmetry is transformed into a tracelessness of the coupling operator. The main results are related to the spin‐free theory of spin properties. In particular, the theorem previously stated (Luzanov and Whyman, Int J Quantum Chem, 1981, 20, 1179) is refined by an explicit general representation of spin density operators through spin‐free (charge) RDMs. Some applications implicating high‐order RDMs (collectivity numbers, the unpaired electron problem, cumulant spin RDMs, spin correlators, etc.) are also considered. For spin‐free RDM components, a new projection procedure without constructing any symmetry adapted state is proposed. An unsolved problem of constructing orthogonal representation matrices within the Fock theory is raised. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
An advantage of modified virtual orbitals of Hartree–Fock method is discussed in the calculation of the second-order perturbation energy. All the modified virtual orbitals can be fitted for the intermediate virtual states in the perturbation expansion, only if the molecular orbitals are expanded in terms of infinite basis functions and the set of molecular orbitals is infinite and complete. If the molecular orbitals are expanded in terms of finite basis functions, only the modified virtual orbitals with lower energies are appropriate to describe the intermediate virtual states, but the modified virtual orbitals with higher energies become inadequate. To explain the usefulness of the modified virtual orbitals, the calculation by the modified Hartree–Fock method without CI are compared with the calculation by the traditional Hartree–Fock method with complete CI .  相似文献   

6.
The N-Representability Problem entails characterizing the set of second order reduced states that are contractions of N-electron states of the Fermion Fock algebra. This problem is formulated in the form of finding the conditions that a positive linear functional defined on a subspace of this algebra must satisfy in order to be extended to the whole algebra. As this algebra is a w*-algebra one can utilize a theorem by Kadison that shows it is sufficient to consider the values of linear functionals on projectors contained in the subspace in order to determine whether they have positive extensions. Thus we find the form of projectors belonging to the subspace of one and two particle operators and subsequently show that the extension conditions needed in the N-Representability Problem correspond to generalized P, Q and G conditions plus the additional constraints that the functionals be dispersion free on the number operator and their values on one particle operators determined by their values on two particle operators.  相似文献   

7.
Diagonal and non-diagonal operators in Fock space are defined. With a universal Fock space wave operator W the Fock space hamiltonian H can be transformed to a diagonal operator L containing all relevant information about eigenvalues of H for arbitrary particle number in a simply coded form. W and L are constructed by perturbation theory, even in a spinfree form, and illustrated diagrammatically.  相似文献   

8.
A one-electron correlation operator is introduced into the Hartree–Fock self-consistent field equation. The correlation operator is derived from the second-order perturbation theory. Energies of atomic and molecular systems calculated from this modified Hartree–Fock equation are equal to that from second-order perturbation of Hartree–Fock equation. The modified equation can also be solved self-consistently by the LCAO approximation. We also presented the modified expressions for other operators.  相似文献   

9.
An open‐shell Hartree–Fock (HF) theory for spin‐dependent two‐component relativistic calculations, termed the Kramers‐restricted open‐shell HF (KROHF) method, is developed. The present KROHF method is defined as a relativistic analogue of ROHF using time‐reversal symmetry and quaternion algebra, based on the Kramers‐unrestricted HF (KUHF) theory reported in our previous study (Int. J. Quantum Chem., doi: 10.1002/qua.25356 ). As seen in the nonrelativistic ROHF theory, the ambiguity of the KROHF Fock operator gives physically meaningless spinor energies. To avoid this problem, the canonical parametrization of KROHF to satisfy Koopmans' theorem is also discussed based on the procedure proposed by Plakhutin et al. (J. Chem. Phys. 2006 , 125, 204110). Numerical assessments confirmed that KROHF using Plakhutin's canonicalization procedure correctly gives physical spinor energies within the frozen‐orbital approximation under spin–orbit interactions.  相似文献   

10.
The Hartree–Fock method (standard Roothaan closed-shell HF –LCAO theory) and the Hartree–Fock–Slater method (restricted HFS –LCAO –DV method developed by Baerends and Ros) have been compared with emphasis on the respective one-electron equations and on the matrix elements of the respective Fock operators. Using the same STO basis in the two cases, the matrix elements of the Fock operators and of their separate one-electron, Coulomb, and exchange contributions have been calculated for the same orbitals and density of the ground state of the diatomic molecule ZnO. The effects of methodical (exchange potential) and numerical (DV method, density fit) differences between the HF and HFS methods on the various matrix elements have been analyzed. As expected the methodical effect prevails and is responsible for the higher (less negative) values of the matrix elements of the HFS Fock operator compared to those of the HF Fock operator. Numerical effects are observable also and are caused by the difference in integration procedures (DV method), not by the density fit.  相似文献   

11.
The bivariational Hartree–Fock scheme for a general many-body operator T is discussed with particular reference to the complex symmetric case: T? = T*. It shown that, even in the case when the complex symmetric operator T is real and hence also self-adjoint, the complex symmetric Hartree–Fock scheme does not reduce to the conventional real form, unless one introduces the constraint that the N-dimensional space spanned by the Hartree–Fock functions ? should be stable under complex conjugation, so that ?* = ?α. If one omits this constraint, one gets a complex symmetric formulation of the Hartree–Fock scheme for a real N-electron Hamiltonian having the properties H = H* = H?, in which the effective Hamiltonian Heff (1) may have complex eigenvalues εk. By using the method of complex scaling, it is indicated that these complex eigenvalues—at least for certain systems—may be related to the existence of so-called physical resonance states, and a simple example is given. Full details will be given elsewhere.  相似文献   

12.
Summary A Wei-Norman type of exponential ansatz is constructed for the time evolution operator in finite dimensional vector spaces. Based on an analysis of the structure of the concerned operator algebra, it is shown that a reduction principle exists even for simple algebras that goes beyond the Wei-Norman result when a specific ordering of the operators is used such that the equations of motion for different generators belonging to different classes are decoupled. It is shown that the solution in this case is global. Some specific approximation schemes are considered and their strengths and weaknesses are analyzed. Model calculations are presented to bring out these features.  相似文献   

13.
A general form of orbital invariant explicitly correlated second-order closed-shell Moller-Plesset perturbation theory (MP2-F12) is derived, and compact working equations are presented. Many-electron integrals are avoided by resolution of the identity (RI) approximations using the complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is introduced, differing from the exact theory by the neglect of terms involving matrix elements over the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis is complete. In the next lower approximation it is assumed that the occupied orbital space is closed under action of the Fock operator [generalized Brillouin condition (GBC)]; this is equivalent to approximation 2B of Klopper and Samson [J. Chem. Phys. 116, 6397 (2002)]. Further approximations can be introduced by assuming the extended Brillouin condition (EBC) or by neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C, which is closely related to the MP2-R12/C method recently proposed by Kedzuch et al. [Int. J. Quantum Chem. 105, 929 (2005)] is described. In the limit of a complete RI basis this method is equivalent to MP2-F12/3B. The effect of the various approximations (GBC, EBC, and exchange) is tested by studying the convergence of the correlation energies with respect to the atomic orbital and auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16 chemical reactions. Approximation 3C is found to perform equally well as the computationally more demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals is used for the first-order wave function. This unexpected result is attributed to geminal basis set superposition errors present in the formally more rigorous orbital invariant methods.  相似文献   

14.
A new procedure for the Fock matrix operator construction is proposed. Its application for RHF calculations on diatomic molecules using Slater orbital basis sets shows that the computation time for the new SCF procedure is proportional to the square of the basis set size.  相似文献   

15.
Using the three‐level energy optimization procedure combined with a refined version of the least‐change strategy for the orbitals—where an explicit localization is performed at the valence basis level—it is shown how to more efficiently determine a set of local Hartree–Fock orbitals. Further, a core–valence separation of the least‐change occupied orbital space is introduced. Numerical results comparing valence basis localized orbitals and canonical molecular orbitals as starting guesses for the full basis localization are presented. The results show that the localization of the occupied orbitals may be performed at a small computational cost if valence basis localized orbitals are used as a starting guess. For the unoccupied space, about half the number of iterations are required if valence localized orbitals are used as a starting guess compared to a canonical set of unoccupied Hartree–Fock orbitals. Different local minima may be obtained when different starting guesses are used. However, the different minima all correspond to orbitals with approximately the same locality. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A method for basis set generation for SCF calculations is proposed. Using SCF orbitals and orbital energies obtained in the extended basis set the Fock operator can be expressed as its spectral resolution. The sum of differences between occupied orbital energies and corresponding eigenvalues obtained by the diagonalization of this operator in the new smaller basis set is a criterion of the quality of this new set. The present method consists of the minimization of this sum by changing the parameters that determine the new basis functions. An example of the optimization of the different Gaussian basis sets for the LiH molecule is described.  相似文献   

17.
We formulate an effective independent particle model where the effective Hamiltonian is composed of the Fock operator and a correlation potential. Within the model the kinetic energy and the exchange energy can be expressed exactly leaving the correlation energy functional as the remaining unknown. Our efforts concentrate on finding a correlation potential such that exact ionization potentials and electron affinities can be reproduced as orbital energies. The equation-of-motion coupled-cluster approach enables us to define an effective Hamiltonian from which a correlation potential can be extracted. We also make the connection to electron propagator theory. The disadvantage of the latter is the inherit energy dependence of the potential resulting in a different Hamiltonian for each orbital. Alternatively, the Fock space coupled-cluster approach employs an effective Hamiltonian which is energy independent and universal for all orbitals. A correlation potential is extracted which yields the exact ionization potentials and electron affinities and a set of associated molecular orbitals. We also describe the close relationship to Brueckner theory.  相似文献   

18.
After having reviewed some pioneer integral approximations closely related to Rüdenberg's expansions of one‐ and two‐electron orbital products, we apply the previously described “Implicit Multi‐Center Integration” techniques on Roothaan's “restricted” Fock‐matrix components over standard atomic orbital bases. The resulting compact forms are very similar to the well‐known “Wolfsberg–Helmholz Conjecture” of “Extended‐Hückel Theory,” which relates the various off‐diagonal matrix elements of “restricted” Fock‐type to their corresponding diagonal counterparts. In this way, a “nonempirical Extended‐Hückel Theory” can be created. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A new computation procedure for direct calculation of the density matrix in the LCAO version of the restricted Hartree–Fock–Roothaan open-shell theory is analyzed. It is proved that the procedure is quadratically convergent and stable to the round-off errors independently of the Fock operator spectrum. The dependence of the limit matrix of the initial matrix is examined.  相似文献   

20.
This work completes the construction of a purely algebraic version of the theory of finite dimensional electronic Fock spaces endowed with a new law of composition (star product). For a fixed number of electrons the corresponding sector of the Fock space becomes a commutative algebra and its ideals are determined by the excitation level used. New approach to non-linear methods of quantum chemistry based on the systematic use of the star product is developed. Efficient computer implementation of multiplication in the aforementioned algebras is described. Quality of different polynomial approximations of electronic wave functions is illustrated with concrete examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号