首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

2.
The copolymerization of 2-propenyl isocyanate ( 1 ) with trimethylsilyl methacrylate ( 2 ) has been investigated. 1 is an electron donor monomer with little tendency to undergo homopolymerization, while 2 is an electron acceptor monomer, capable of free radical homopolymerization. Polymerization to low conversion in benzene gave copolymers with preferential incorporation of 2 and a tendency towards alternating copolymers with increasing amounts of 1 in the feed (1 : 1.13 with a 9 : 1 feed ratio of monomers 1 : 2 ). The glass transition temperatures of the amorphous polymers are in the range from 100–70°C, with a Tg of poly(trimethylsilyl methacrylate) being 135°C. Desilylation occurs in the presence of water, causing an exothermal reaction above the glass transition temperature probably with formation of amides, a reaction that can be used for crosslinking. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 611–616, 1998  相似文献   

3.
Homopolymers of methyl α-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the 60Co γ-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl α-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The Gs - Gx and Gs values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl α-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenlyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of Gs that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the hehomopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components present in smaller concentrations (3-5 mole %) than the threshold levels (25-50% necessary for significant crosslinking).  相似文献   

4.
The monomer reactivity ratios for copolymerization of 2-vinyl-4,4-dimethylazlactone (VA) and ethyl α-hydroxymethylacrylate (EHMA) were 0.20–0.24 and 0.53–0.74, respectively, which show that EHMA is slightly more reactive with VA than with itself and should lead to random copolymers favoring alternation. The VA–styrene (VA–St) system also has a tendency to form random copolymers but with increased tendency for alternation with both r1 and r2 between 0.18–0.22. Tg's of VA–EHMA and VA–St copolymers varied between 100 and 136°C, and 96 and 117°C, respectively. Thermolysis of VA–EHMA copolymers resulted in crosslinking via the ring-opening reaction of VA groups by EHMA alcohols, followed by transesterification involving EHMA units at higher temperatures leading to highly crosslinked structures. The performed dimer of EHMA and VA was also synthesized and found to be an effective crosslinking agent in free radical vinyl polymerizations.  相似文献   

5.
Copolymers of 1,2,2,6,6-pentamethyl-4-piperidinyl m-isopropenyl-α,α-dimethylbenzyl carbamate (CB) with styrene (S) and with methyl methacrylate (MMA) were synthesized using AIBN as initiator. S–CB copolymers made from feed ranging from 0.45–0.94 mole fractions S and MMA-CB copolymers made from feed of 0.34–0.88 mole fractions MMA were used to determine the monomer reactivity ratios r1 and r2. The structure of S–CB copolymers was inferred to be mainly of a random nature and in the MMA–CB copolymerization system there is a stronger tendency to form alternating copolymers. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The ceric ion-initiated graft copolymerization of methyl methacrylate onto wood cellulose was found to depend on the concentrations of initiator, monomer, and cellulose. The structure of cellulose—methyl methacrylate graft copolymers was studied by hydrolyzing away the cellulose backbone to isolate the grafted poly(methyl methacrylate) branches. The molecular weights and molecular weight distributions of the grafted poly(methyl methacrylate) were determined by using gel-permeation chromatography. The number-average (M?n) molecular weights ranged from 36 000 to 160 000 and the polydispersity ratios (M?w/M?n) varied from 4.0 to 7.0. The grafting frequency or the number of poly(methyl methacrylate) branches per cellulose chain calculated from the per cent grafting and molecular weight data varied from 0.38 to 3.2. The structure of cellulose—methyl methacrylate graft copolymers and the effect of stepwise addition of initiator on the structure are discussed.  相似文献   

7.
Copolymers of 2,2,6,6-tetramethylpiperidinyl methacrylate (TPMA) with styrene (S) and with methyl methacrylate (MMA) were synthesized using AIBN as initiator. S–TPMA copolymers from feed ranging from 0.10–0.80 mole fractions TPMA and MMA-TPMA copolymers from feed of 0.04–0.85 mole fractions TPMA were used in the determination of monomer reactivity ratios r1, r2. Four different methods were employed in the calculations of r1 and r2 and all calculated results were in good agreement with each other. The structure of S–TPMA copolymers was inferred to be of an alternating nature while that of MMA–TPMA copolymers was random. Both copolymers are potential hindered amine light stabilizers (HALS) and are expected to be less extractable from, and more compatible with, polystyrene and poly(methyl methacrylate) base polymers.  相似文献   

8.
Neighboring monomer units cause significant shifts in the infrared absorption peaks attributed to cis- and trans-1,4 units in conjugated diene-acceptor monomer copolymers. Conjugated diene-maleic anhydride alternating copolymers apparently have a predominantly cis-1,4-structure, while alternating diene-SO2 copolymers have a predominantly trans-1,4 structure. Alternating copolymers of butadiene, isoprene, and pentadiene-1,3 with α-chloroacrylonitrile and methyl α-chloroacrylate, prepared in the presence of Et1.5AlCl1.5(EASC), have trans-1,4 unsaturation. Alternating copolymers of chloroprene with acrylonitrile, methyl acrylate, methyl methacrylate, α-chloroacrylonitrile, and methyl α-chloroacrylate prepared in the presence of EASC-VOCl3 have trans-1,4 configuration. The reaction between chloroprene and acrylonitrile in the presence of AlCl3 yields the cyclic Diel-Alder adduct in the dark and the alternating copolymer under ultraviolet irradiation. The equimolar, presumably alternating, copolymers of chloroprene with methyl acrylate and methyl methacrylate undergo cyclization at 205°C to a far lesser extent than theoretically calculated, to yield five and seven-membered lactones. The polymerization of chloroprene in the presence of EASC and acetonitrile yields a radical homopolymer with trans-1,4 unsaturation.  相似文献   

9.
Equimolar alternating copolymers of styrene and methyl methacrylate (prepared with Et1.5AlCl1.5, SnCl4, and ZnCl2) as well as equimolar random copolymer were treated with polyphosphoric acid at 135°C. The extent of cyclization of the alternating copolymers was about 40%, independent of the cotacticity of the copolymer, and there was little or no crosslinking. The random copolymer underwent only 10% cyclization and considerable crosslinking. The extent of cyclization of the alternating copolymer of styrene and methyl acrylate (prepared with Et1.5AlCl1.5) was the same as that of the random copolymer and was lower than that of the corresponding methyl methacrylate copolymer. Both alternating and random copolymers underwent extensive crosslinking.  相似文献   

10.
2-Phthalimido-1,3-butadiene (2-PB) was polymerized either radically or thermally in bulk and in solution. While the polymer obtained by solution polymerization was soluble in some solvents such as halogenated hydrocarbons, dioxane, and dimethylformamide and had a softening point in the range of 160–170°C., that obtained by polymerization in bulk was insoluble in any solvent and only swollen on being immersed in such solvents as above. The reduced viscosity of the soluble polymer obtained by solution polymerization was approximately 1.0, and this value remained almost unchanged with varying polymerization time. Likewise the cationic polymerization in acetylene tetrachloride or in chloroform at 20°C. with the use of cationic catalysts such as boron trifluoride and stannic chloride was attempted, but no formation of polymer was observed. This monomer preferentially reacted with acrylonitrile, methyl methacrylate, styrene, and N-vinylphthalimide to form the respective copolymers; it reacted somewhat less readily with vinyl acetate. The monomer reactivity ratios in the copolymerization with styrene were calculated by the Fineman and Ross method and found to be r1 (2-PB) = 5.2 and r2 (styrene) = 0.11, respectively, from which the Q, e parameters were successively evaluated to be Q = 5.0 and e = ?0.05. The fact that e value is close to zero, easily explains why this monomer can copolymerize well both with acrylonitrile, which has a highly positive value of e (1.2) and with styrene, for which e is considerably negative (-0.8).  相似文献   

11.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   

12.
4‐Methacryloyl‐2,2,6,6‐tetramethyl‐piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo‐induced copolymerization of methyl methacrylate (MMA, M1) with MTMP (M2) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using 1H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r1 = 0.37 and r2 = 1.14 from extended Kelen‐Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using 1H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr′, and lr′ in the syndiotactic configuration are found. The sequence‐length distribution in the MMA/MTMP copolymers is also obtained. For f1 = 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f1 = 0.6, the alternating tendency prevails and a large number of mono‐sequences are formed; further up to f1 = 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A series of forced gradient copolymers with different controlled distribution of monomer units along the copolymer backbone were successfully prepared by atom transfer radical polymerization in miniemulsion. The newly developed initiation technique, known as activators generated by electron transfer, was beneficial for forced gradient copolymers preparation because all polymer chains were initiated within the miniemulsion droplets and the miniemulsion remained stable throughout the entire polymerization. Various monomer pairs with different reactivity ratios were examined in this study, including n‐butyl acrylate/t‐butyl acrylate, n‐butyl methacrylate/methyl methacrylate, and n‐butyl acrylate/styrene. In each case, the added monomer diffused across the aqueous suspending medium and gradient copolymers with different forced distributions of comonomer units along the polymer backbone were obtained. The shape of the gradient along the backbone of the copolymers was influenced by the molar ratio of the monomers, the reactivity ratio of the comonomers as well as the feeding rate. The shape of the gradient was also affected by the relative hydrophobicities of the comonomers. Copolymerizations exhibited good control for all feeding rates and comonomer feeding ratios, as evidenced by narrow molecular weight distribution (Mw/Mn = 1.20–1.40) and molecular weight increasing smoothly with polymer yield, indicating high initiation efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1413–1423, 2007  相似文献   

14.
On the basis of our own experimental and some literature data, the contributions of slow relaxation mechanisms to the shear modulus, (GeN — Ge), and the parameter C2 of the Mooney-Rivlin equation have been examined for lightly crosslinked poly(butyl methacrylate), poly(butyl acrylate), poly(2-hydroxyethyl methacrylate), and some rubber networks. For the rubbers, increasing degree of crosslinking caused a decrease in GeN — Ge and an increase in C2; for the other networks, both GeN — Ge and C2 diminished with increasing crosslinking. The effectiveness of the crosslinking polymerization, and also the absolute values of the physical crosslinking degree, decreased in the order of poly(2-hydroxyethyl methacrylate), poly(butyl methacrylate), and poly(butyl acrylate). The values of the equilibrium compliances J of the networks studied, obtained by various methods, have also been compared, and good agreement has been found.  相似文献   

15.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

16.
Copolymers of vinylpyrrolidone-p-tert-butylphenyl methacrylate (VP-MBPh) of several compositions were prepared by polymerization in benzene at 50°C using α′α′-azobisisobutyronitrile as initiator. Three of the copolymers were fractionated. Number-average molecular weights of fractionated samples were determined by osmotic pressure in benzene or 2-propanol. Kuhn–Mark–Houwink relations were established in benzene, chloroform, and 2-propanol. From the relation between M n and the intrinsic viscosity (η), it appears that these random copolymers behave as predicted by the theory for flexible polymers. Abnormal viscometric behavior shown by one of the copolymers in nitromethane at 29°C (the theta temperature) is discussed. The Stockmayer–Fixman semiempirical method was used for estimating unperturbed dimensions from viscosity data obtained in chloroform, a good common solvent. Values of the viscosity parameter Kθ increase with the content of p-tert-butylphenyl methacrylate. In general, experimental Kθ values are higher than those calculated for the homopolymers. Excluded-volume parameters are estimated and discussed in relation to repulsive interactions between unlike monomer units.  相似文献   

17.
This article explores the synthesis of a novel methacrylic macromonomer with an amphiphilic character derived from poly(ethylene glycol) tert‐octylphenyl ether (MT) and its respective homopolymer. To know their reactivity in radical copolymerization reactions with methyl methacrylate (MMA), a model monomer (MTm) was synthesized to determine the reactivity ratios and compare them with the low molar fractions of copolymers of MT with MMA because they were difficult to isolate. They were rMTm = 0.97 and rMMA = 0.95. The compositional diagrams when representing the weight fraction of MT and MTm in the feed and the copolymer suggested that a clear correlation exists between the experimental points of the model monomer MTm and the macromonomer MT ones, suggesting that the length of the side poly(ethylene oxide) chain does not affect the reactivity of the methacrylic double bond in the prepared monomers for this type of polymerization reaction. The reactivity ratios of the copolymers have a tendency for the formation of random or Bernoullian copolymers. The glass‐transition temperatures (Tg's) of the prepared copolymers were determined by differential scanning calorimetry, deviated from the Fox equation, and discussed on the basis of treatments that consider the influence of the monomeric units along the copolymer chains, determining the Tg of the corresponding alternating dyads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1641–1649, 2003  相似文献   

18.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

19.
Vinylbenzyl acetate was synthesized in yields greater than 80% via the reaction of vinylbenzyl chloride with potassium acetate. Radical copolymerization of the monomer with styrene and methylmethacrylate were studied at 60°C. Reactivity ratios determined from FT-IR analysis of low conversion copolymerizations with styrene (M1) were r1 = 0.78 ± 0.07 and r2 = 1.33 ± 0.13. Polymers and copolymers of vinylbenzyl acetate were found to completely hydrolyze in dioxane/water/base solution to yield hydroxymethyl functionality. Size exclusion chromatography studies indicated that the hydrolysis proceeded without crosslinking. This procedure is a useful method for the introduction of hydroxyl functionality on polymers and avoids crosslinking problems common in previously reported methods.  相似文献   

20.
A new monomer, methyl 4-(2-methyl-1-oxoprop-2-en-1-yl)benzoate (p-(methoxycarbonyl)phenyl isopropenyl ketone, MeOCO-PIPK), was synthesized and copolymerized with styrene and methyl methacrylate (MMA). The copolymers of MeOCO-PIPK and 2-methyl-1-phenylprop-2-en-1-one (phenyl isopropenyl ketone, PIPK) with styrene and MMA were photolyzed by deep-, mid- and near-UV light in dilute solution; and the quantum yields of scission, ϕg, and the UV absorption spectra were measured. The p-methoxycarbonyl substitution increased the molar extinction coefficients of the ketone monomer units extensively, but slightly lowered the ϕg values in styrene and MMA copolymers. This is expected to increase the net sensitivity of solid films of the polymers. The ϕg was found independent of the wavelength, despite the concurrent absorption by styrene units in the styrene copolymers. Larger ϕg values were obtained for the MMA copolymers than the corresponding styrene copolymers. Solvents with larger dielectric constants gave larger ϕg for the copolymer of MMA with PIPK; but when the dielectric constants were similar, lower ϕg values were observed in the solvents with more easily abstractable hydrogens. A large bleaching effect was seen in MMA copolymers, which should make possible the formation of resist patterns with steep profiles when used in photolithography. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号