首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
{[2-(dimethylamino)ethyl]cyclopentadienyl}titanium trichloride (CpNTiCl3, 1 ) was activated with methylaluminoxane (MAO) to catalyze polymerizations of ethylene (E), propylene (P), ethylidene norbornene (ENB), vinylcyclohexene (VCH), and 1,4-hexadiene (HD). The dependence of homopolymerization activity ( A ) of 1 /MAO on olefin concentration ([M]n) is n = 2.0 ± 0.5 for E and n = 1.8 ± 0.2 for P. The value of n is 2.4 ± 0.2 for CpTiCl3/MAO catalysis of ethylene polymerization; this system does not polymerize propylene. 1 /MAO catalyzes HD polymerization at one-tenth of A H for 1-hexene, probably because of chelation effects in the HD case. The copolymerization of E and P has reactivity ratios of rE = 6.4 and rP = 0.29 at 20°C, and rErP = 1.9, which suggests 1 /MAO may be a multisite catalyst. The copolymerization activity of CpTiCl3/MAO is 50 times smaller than that of CpNTiCl3/MAO. Terpolymerization of E/P/ENB has A of 105 g of polymer/(mol of Ti h), incorporates up to 14 mol % (∼ 40 wt %) of ENB, and high MW's of 1 to 3 × 105. All of these parameters are surprisingly insensitive to the ENB concentration. The E/P/VCH terpolymerization has comparable A value of (1.3 ± 0.3) × 105 g/(mol of Ti h). The incorporation of VCH in terpolymer increases with increasing [VCH]. Terpolymerization with HD occurs at about one-third of the A of either ENB or VCH; the product HD–EPDM is low in molecular weight and contains less than 4% of HD. These terpolymerization results are compared with those obtained previously for three zirconocene precursors: rac-ethylenebis(1-η5-indenyl)dichlorozirconium ( 6 ), rac-(dimethylsilylene)bis(1-η5-indenyl)dichlorozirconium ( 7 ), and ethylenebis(9-η5-fluorenyl)dichlorozirconium ( 8 ). The last compound is a particularly poor terpolymerization catalyst; it incorporates very little VCH or HD and no ENB at all. 7 /MAO is a better catalyst for E/P/VCH terpolymerization, while 6 /MAO is superior in E/P/HD terpolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 319–328, 1998  相似文献   

2.
Ethylene (E), propylene (P), and 1,4-hexadiene (HD) were terpolymerized with rac-1,2-ethylenebis (1-η5-indenyl) zirconium(IV) dichloride and methylaluminoxane (Et[Ind]2ZrCl2/MAO), and compared with the copolymerizations of E/P, E/HD, P/HD, and terpolymerization using ethylidene norbornene (ENB) as the termonomer. HD lowers the polymerization activity, the effect is more pronounced for P/HD and E/P/HD using large amount of P, than for E/HD and E/P/HD using feed low in P. The polymer molecular weight is most strongly affected by the temperature of polymerization (Tp), whereas the E/P ratio in the feed has virtually no effect. The reactivity ratios rE and rP are 3.0 and 0.3, respectively, at 20°C but rP becomes larger than rE at TP = 70°C. 1H-NMR spectra showed occurrence of cycloaddition in the homopolymerization of HD; on the other hand, HD is incorporated in the terpolymer only by linear 1,2-addition. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
This article is devoted to the study of electron‐beam‐induced degradation under argon atmosphere of an ethylene–propylene–diene monomer (EPDM, based on 5‐ethylidene 2‐norbornene) and an ethylene–propylene rubber (EPR) containing the same molar ratio of ethylene/propylene. The chemical structure modifications of polymeric samples were analyzed by ultraviolet–visible and IR spectroscopies. Crosslinking reactions were deduced by measuring the changes in gel fraction and the degree of swelling in n‐heptane. Irradiation of EPDM and EPR created trans‐vinylene, vinyl, vinylidene, and dienic‐type unsaturations. The radiochemical yields for unsaturation formations in EPDM and EPR were similar. Degradation also involved crosslinking and the production of molecular hydrogen. The comparison between EPDM and EPR showed that the diene (in which a double bond is consumed with a high radiochemical yield) contributes to the increase in rate and intermolecular bridges density. Mechanisms are proposed to account for the main routes of EPDM degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1239–1248, 2004  相似文献   

4.
Ethylenebis (η5-fluorenyl) zirconium dichloride ( 1 ) and rac-dimethylsilylene bis (1-η5-in-denyl) zirconium dichloride ( 2 ) were activated with methylaluminoxane (MAO) to catalyze ethylene (E) propylene (P) copolymerizations. The former produces high MW copolymer at 20°C rich in ethylene with reactivity ratio values of rE = 1.7 and rP <0.01, whereas the latter produces lower MW random copolymers with rE = 1.32 and rp = 0.36. Ethylidene norbornene (ENB) complexes with 1/MAO but does not undergo insertion in the presence of E and P. In contrast, 2/MAO catalyzes terpolymerization incorporating 9-15 mol % of ENB with slightly lower MW and activity than the corresponding copolymerizations. In comparison, 1,4–hexadiene was incorporated by 2/MAO with much lower A and MW . Terpolymerizations were also conducted with vinylcyclohexene using both catalyst systems. The steric and electronic effects in these processes were discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
4-Vinylcyclohexene (VCH) and cyclooctadiene (COD) were investigated as termonomers in EPDM (ethylene/propylene/diene) synthesis by using rac-ethylenebis (1-η5-indenyl) zir-conium dichloride ( 1 ) as a catalyst precursor. Homopolymerizations of VCH, vinylcycloh-exane and cyclohexene were compared. The parameter Kπκp, which is the apparent rate constant for Ziegler-Natta polymerization, is about the same for VCH and vinylcyclohexanebut is 10 times smaller for cyclohexene. Therefore, the linear olefinic double bond is more active than the cyclic internal double bond. VCH reduces ethylene polymerization rate but not propylene polymerization rate in copolymerizations. In terpolymerizations, VCH tends to suppress ethylene incorporation especially at elevated polymerization temperature and Lowers the polymer MW by about two-fold. COD has very low activity as a termonomer. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Novel star‐like polymeric materials with high cis content could be obtained by using α‐norbornenyl macromonomers and highly stable macroinitiators derived from an active norbornene derivative [5‐(2‐bromo‐2‐methylpropionylaminomethyl)bicyclo[2.2.1]hept‐2‐ene (NBBrMPAM)], which was synthesized by the reaction of norbornene methylene amine and 2‐bromo‐2‐methylpropionyl bromide. The α‐norbornenyl macromonomer (NBPMMA), which is polymethyl methacrylate containing norbornenyl end group, was prepared by atom transfer radical polymerization (ATRP) using NBBrMPAM as an initiator. Star‐like polynorbornene with high cis microstructure (cis/trans = 72/28) was obtained directly by ring‐opening metathesis polymerization of NBPMMA macromonomer having number molecular weight (Mn ) as low as 6.39 × 103. Random ring‐opening metathesis copolymerization of NBPMMA and norbornene derivative containing carbazole group (NBCbz) was carried out at 25 °C by using Ru catalyst [(Cy3P)2Cl2Ru = CHPh, Cy = cyclohexyl, Ph = phenyl]. High cis (cis/trans = 63/37) organo‐soluble star‐like random poly(NBPMMA‐co‐NBCbz) was successfully obtained with high number‐average molecular weight (Mn ) of 4.76 × 104 and molecular weight distribution polydispersity index of 1.78. Organo‐soluble comb‐shaped copolymers with MMA could be successfully obtained using ATRP macroinitiator [poly(HNBBrMPAM)] in diluted macroinitiator solution with a concentration less than 3.64 × 10?2 mol.L?1. This is the first ever attempt to prepare novel star‐like organo‐soluble polymeric materials with high cis microstructure via the combination of ring‐opening metathesis polymerization and ATRP. Multimodification could be considered to be carried out by using the functional bromo group at the end of side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3382–3392, 2006  相似文献   

7.
By use of a THF-containing trimethylsilylmethyl scandium catalyst system (C5Me4SiMe3)Sc(CH2SiMe3)2(THF)/[Ph3C][B(C6F5)4], the multi-component copolymerization of 10-bromo-1-decene (BrDC) with ethylene, propylene, and dienes has been achieved to afford a new family of bromine-functionalized polyolefins with controllable composition and high molecular weight. The copolymerization of BrDC with ethylene afforded the well-defined BrDC–ethylene copolymers with high BrDC incorporation (up to 12 mol%) and high molecular weight (Mw > 100 kg mol−1). The terpolymerization of propylene, ethylene with BrDC afforded random ethylene–propylene–BrDC terpolymers with controllable bromine content (2 ~ 11 mol%), high molecular weight (Mw > 100 kg mol−1) and low glass transition temperature (Tg = −51 °C ~ −67 °C). Moreover, the tetrapolymerization of ethylene, propylene, BrDC, and ethylidene norbornene or conjugated dienes such as isoprene and myrcene has been achieved for the first time to afford selectively the bromine-functionalized ethylene–propylene–diene rubbers containing various types of double bonds.  相似文献   

8.
A new silolene-bridged compound, racemic (1,4-butanediyl) silylene-bis (1-η5-in-denyl) dichlorozirconium ( 1 ) was synthesized by reacting ZrCl4 with C4H8Si (IndLi)2 in THF. 1 was reacted with trialkylaluminum and then with triphenylcarbenium tetrakis (penta-fluorophenyl) borate ( 2 ) to produce in situ the zirconocenium ion ( 1 +). This “constraint geometry” catalyst is exceedingly stereoselective for propylene polymerization at low temperature (Tp = ?55°C), producing refluxing n-heptane insoluble isotactic poly(propylene) (i-PP) with a yield of 99.4%, Tm = 164.3°C, δHf = 20.22 cal/g and M?w = 350 000. It has catalytic activities of 107?108 g PP/(mol Zr · [C3H6] · h) in propylene polymerization at the Tp ranging from ?55°C to 70°C, and 108 polymer/(mol Zr · [monomer] · h) in ethylene polymerization. The stereospecificity of 1 + decreases gradually as Tp approaches 20°C. At higher temperatures the catalytic species rapidly loses stereochemical control. Under all experimental conditions 1 + is more stereospecific than the analogous cation derived from rac-dimethylsilylenebis (1-η5-indenyl)dichlorozirconium ( 4 ). The variations of polymerization activities in ethylene and in propylene for Tp from ?55°C to +70°C indicates a Michaelis Mention kinetics. The zirconocenium-propylene π-complex has a larger insertion rate constant but lower thermal stability than the corresponding ethylene π-complex. This catalyst copolymerizes ethylene and propylene with reactivity ratios of comparable magnitude rE ? 4rp. Furthermore, rE.rp ? 0.5 indicating random copolymer formation. Both 1 and 4 activated with methylaluminoxane (MAO) exhibit much slower polymerization rates, and, under certain conditions, a lower stereo-selectivity than the corresponding 1 + or 4 + system. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The present work reports the application of the WCl6–e?–Al–CH2Cl2 catalyst system to the ring‐opening metathesis polymerization of norbornene. Analysis of the polynorbornene microstructure by means of 1H and 13C NMR spectroscopy indicates that the polymer contains a mainly cis stereoconfiguration of the double bonds (σc = 0.61) and a blocky distribution (rtrc > 1) of cis and trans double bonds (rtrc = 3.37). This catalytic system is reluctant to facilitate the competing addition reactions of cycloalkenes while proceeding with the polymerization reactions with good conversions and at short periods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455  相似文献   

11.
A novel catalyst precursor, (η5‐pentamethylcyclopentadienyl)titanium triallyloxide (Cp*Ti(OCH2—CH=CH2)3), was prepared and employed in a study of propylene polymerization in the presence of methylaluminoxane (MAO). This work has revealed that the half‐titanocene catalyst is desirable for the production of elastomeric poly(propylene) with high molecular weight (Mw = 8–69×104) as well as in good yields under typical polymerization conditions.  相似文献   

12.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

13.
This study describes the application of the electrochemically generated molybdenum‐based catalyst system MoCl5? e?? Al? CH2Cl2 to ring‐opening metathesis polymerization of bicyclo[2.2.1]hept‐2‐ene (norbornene). The results are compared with those previously obtained by the WCl6? e?? Al? CH2Cl2 system. The polymer product has been characterized by 1H and 13C NMR, IR and gel‐permeation chromatography techniques. This molybdenum‐based catalyst system has led to a mainly trans stereoconfiguration (ca 60%) of the double bonds, in contrast to the polymer obtained with the tungsten‐based analogue, where the cis content is 60%. Analysis of the poly(1,3‐cyclopentylenevinylene) microstructure by 13C NMR spectroscopy revealed that the polymer having σc = 0.41 (fraction of double bonds with cis configuration) contains a slightly blocky distribution (rtrc > 1) of the double‐bond dyads (rtrc = 1.44). In addition, the influence of reaction parameters, e.g. reaction time, electrolysis time and catalyst aging time, on conversion has been analysed in detail. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of the concentrations of propylene oxide and the catalyst (salen)CoDNP/[PPN]Cl ((salen)CoDNP: [PPN]Cl = 1: 1, mol/mol) on the kinetics of the copolymerization of CO2 and propylene oxide at 0.5 MPa and 20°C has been studied. The reaction proceeds at a constant rate after an induction period, and the value of this period varies with the reagent concentrations. The steady-state reaction rate increases linearly with the propylene oxide concentration in the range 5.0–14.3 mol/L. At high catalyst concentrations, such as (5.2–7.3) × 10?3 mol/L, the reaction rate is first order in the catalyst; at concentrations below 5 × 10?3 mol/L, the reaction rate is second order in the catalyst. Molecular mass increases in proportion to the propylene oxide conversion, that is consistent with a living polymerization process. A regioregular copolymer with 96% head-to-tail (HT) connectivity of propylene oxide has been obtained.  相似文献   

15.
Two nickel(II) complexes of {2‐[C3HN2(R1)2‐3,5]}[C(R2)?N(C6H3iPr2‐2,6)]NiBr2 (complex 1 : R1 = CH3, R2 = 2,4,6‐trimethylphenyl; complex 2 : R1 = R2 = Ph) were synthesized and characterized. The solid‐state structure of complex 1 has been confirmed by X‐ray single‐crystal analysis. Activated by methylaluminoxane (MAO), complexes 1 and 2 are capable of catalyzing the polymerization of norbornene with moderate activities [up to 10.56 × 105 gPNBE (mol Ni h)?1] with high molecular weights (Mw?13.56 × 105 g mol?1) and molecular weight distributions were around 2. The influences of polymerization parameters such as reaction temperature and Al–Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The obtained polynorbornenes were characterized by means of 1H‐NMR and FTIR techniques. The analytical results of polymer structures indicated that the norbornene polymerization is vinyl‐type polymerization rather than ROMP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
贺爱华 《高分子科学》2011,29(5):597-601
TiCl4/MgCl2/clay compound catalyst was prepared by chemical reaction.Exfoliated polypropylene(PP)/clay nanocomposites were synthesized by in situ polymerization with this compound catalyst.Effects of polymerization temperature,polymerization time,propylene pressure,solvent consumption and pre-treat time of catalyst on catalyst activity and catalytic stereospecificity were studied.Under optimal conditions,activity of the nano-compound catalyst is about 88.3 kg/(mol Ti·h).Isotacticity of PP obtained in the nanocomposites is in the range of 89%-99%,and its melting temperature is about 159℃.The weight-average molecular weight of PP can reach 6.7×105 - 7.8×105,and the molecular weight distribution is between 7.7 and 7.9.  相似文献   

17.
Decene-l was polymerized with the MgCl2/ethylebenzoate/p-cresol/AIEt3/TiCl4-AlEt3/methyl-p-toluate catalyst at 50° using an A/T ratio of 167 and a range of monomer concentration. The concentration of the two kinds of active sites are [Ti] = 12% and [Ti] = 4% of the total titanium. The rate constants of propagation are 24 M?1 s?1. Chain transfers to AIEt3, monomer, and by β-hydride elimination have rate constant values of 1.7 × 10?3 M?1 s?1, 1.34 × 10?2 M?1 s?1, and 1.7 × 10?2 s?1, respectively. Poly(decene-l) have relatively narrow MW which are unchanged during the course of a polymerization. Therefore, the active site concentrations in the CW catalyst for propylene and decene polymerization are identical and their rate constant values agree within a factor of 2. However, the rate of decene polymerization depends on fractional order of monomer concentration and decreases with the increase of activator concentration. Furthermore, the formation of metal polymer bonds has a rate independent of these concentrations. These kinetic behaviors are a manifestation of absorption processes of these species which are not seen in propylene polymerizations.  相似文献   

18.
Vinyl‐type polymerization of norbornene as well as random copolymerization of norbornene with styrene was studied using a series of copper complexes‐MAO. The precatalysts used here are copper complexes with β‐ketoamine ligands based on pyrazolone derivatives and the molecular structure of complex 4 was determined using X‐ray analysis. All of these catalyst systems are moderately active for the vinyl‐type polymerization of norbornene and random copolymerization of norbornene with styrene. The random copolymers obtained suggest that only one type of active species is present. Gel permeation chromatography (GPC) and NMR indicate that the copolymers are ‘true’ copolymers. The copolymerization reactivity ratios (rNBE = 20.11 and rSty = 0.035) indicate a much higher reactivity of norbornene, which suggests a coordination polymerization mechanism. The solubility and processability of the copolymers are improved relative to polynorbornene and the thermostability of the copolymers is improved relative to polystyrene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

20.
Changes in the molecular-weight characteristics of the product of ethylene polymerization in the course of reaction in the presence of a homogeneous catalytic system and in the number and reactivity of catalyst active sites were studied. The catalytic system consisted of bis[N-(3-tert-butylsalicylidene)anilinato]zirconium dichloride and methylalumoxane as an activator. This catalytic system exhibited the signs of unsteady-state conditions: the rate of polymerization dramatically decreased as the reaction time increased. At the onset of polymerization (to 5 min), the catalyst was single-site, and it produced low-molecular-weight polyethylene with M w = (4–10) × 103 g/mol. The fraction of active sites at the initial point in time was as high as 11% based on the initial amount of the zirconium complex. The reactivity of these centers was very high (the rate constant of polymer chain growth was 5.4 × 104 l mol−1 s−1 at 35°C). As the polymerization time increased, the number of active sites decreased and the molecular-weight distribution of polyethylene broadened because of the decay of a portion of initial centers and the formation of new centers that produced high-molecular-weight polyethylene with M w to 130 × 104 g/mol. The propagation rate constant measured at a sufficiently long polymerization time (20 min) was lower than that at the initial point in time; this fact suggests the much lower reactivity of the new active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号