首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics for hydrolysis and the chemoselectivity toward nucleophiles of mutagenic N-trimethylsilylmethyl-N-nitrosourea, a silicon analogue of N-neopentyl-N-nitrosourea, were studied.  相似文献   

2.
The hydrolysis of the iron(III) ion in sodium chloride medium without organic ligands and in the presence of acetate and EDTA ligands was studied by emf method, at 25°C. The data indicate the effect of the organic ligands. In the presence of acetate ion the beginning of hydrolysis of the iron(III) ion is slightly shifted toward lower pH values, while in the presence of EDTA, as a strong complex forming ligand, the beginning of hydrolysis is shifted toward higher pH values for 2.5 pH units.  相似文献   

3.
[reaction: see text] The stabilities of various functionalized norbornenes that are monomers for the ring-opening metathesis polymerization (ROMP) in aqueous solution were evaluated toward hydrolysis under a range of temperatures (37, 60, and 80 degrees C) and pH values (3-9). All monomers contain hydrolyzable linkages to pendant functional groups, and conclusions were drawn relating to how the chemical diversity of these pendant functional groups, in accordance with the pH and temperature variations, affect hydrolysis of the aforementioned linkages. The hydrolysis was monitored by reverse phase HPLC analysis, and/or NMR spectroscopy. As expected, monomers containing ester linkages were fairly labile at higher pH values, while acetal-based linkers were cleaved at lower pH values. Beta-amino ester groups experienced a significant increase in hydrolysis rate, while carboxylic acid-containing monomers did not follow any clear trend. Saccharide-containing monomers exhibited unique behaviors for various pH values and temperature ranges.  相似文献   

4.
A short and convenient synthesis of 3'- and 5'-O-levulinyl-2'-deoxynucleosides has been developed from the corresponding 3',5'-di-O-levulinyl derivatives by regioselective enzymatic hydrolysis, avoiding several tedious chemical protection/deprotection steps. Thus, Candida antartica lipase B (CAL-B) was found to selectively hydrolyze the 5'-levulinate esters, furnishing 3'-O-levulinyl-2'-deoxynucleosides 3 in >80% isolated yields. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) and Candida antarctica lipase A (CAL-A) exhibit the opposite selectivity toward the hydrolysis at the 3'-position, affording 5'-O-levulinyl derivatives 4 in >70% yields. A similar hydrolysis procedure was successfully extended to the synthesis of 3'- and 5'-O-levulinyl-protected 2'-O-alkylribonucleosides 7 and 8. This work demonstrates for the first time application of commercial CAL-B and PSL-C toward regioselective hydrolysis of levulinyl esters with excellent selectivity and yields. It is noteworthy that protected cytidine and adenosine base derivatives were not adequate substrates for the enzymatic hydrolysis with CAL-B, whereas PSL-C was able to accommodate protected bases during selective hydrolysis. In addition, we report an improved synthesis of dilevulinyl esters using a polymer-bound carbodiimide as a replacement for dicyclohexylcarbodiimide (DCC), thus considerably simplifying the workup for esterification reactions.  相似文献   

5.
The rate for hydrolysis, chemoselectivitly toward nucleophiles, and partition property of N-neopentyl-, N-trimethylsilylmethyl-, and N-trimethylgermylmethyl-N-nitrosoureas were compared. The latter two compounds are silicon and germanium analogues of the neopentyl derivative. The substitution effect of Ge in place of Si or C are discussed on the chemical and physicochemical properties.  相似文献   

6.
Mononucleotides, when entrapped within a mono-olein-based cubic Ia3d liquid crystalline phase, have been found to undergo hydrolysis at the sugar-phosphate ester bond in spite of their natural inertness toward hydrolysis. Here, kinetics of the hydrolysis reaction and interactions between the lipid matrix and the mononucleotide adenosine 5'-monophosphate disodium salt (AMP) and its 2'-deoxy derivative (dAMP) are thoroughly investigated in order to shed some light on the mechanism of the nucleotide recognition and phosphate ester hydrolysis. Experiments evidenced that molecular recognition occurs essentially through the sn-2 and the sn-3 alcoholic OH groups of mono-olein. As deduced from the apparent activation energies, the mechanism underlying the hydrolysis reaction is the same for AMP and dAMP. Nevertheless, the reaction proceeds slower for the latter, highlighting a substantial difference in the chemical behavior of the two nucleotides. A model that explains the hydrolysis reaction is presented. Remarkably, the hydrolysis mechanism appears to be highly specific for the Ia3d phase.  相似文献   

7.
Microcrystalline cellulose (MCC) is suspected to be a new adulteration in pasteurized milk in China, yet an efficient method for MCC detection in dairy has not been established. This study presents a novel procedure to detect and estimate MCC in pasteurized milk using dialysis, cellulase hydrolysis, and a reducing sugar assay. The background value of reducing sugar was eliminated by dialysis, and cellulase activity toward MCC was stable in dialyzed milk. A criterion for MCC detection and an empirical formula for MCC estimation were summarized based on the reducing sugar variation after hydrolysis. The detection sensitivity was below 0.5 g/L. Reducing sugar distribution after cellulase-catalyzed hydrolysis was examined by HPLC, and revealed that most of the detected sugar was glucose. This paper describes a practical method for detection of MCC in pasteurized milk that might benefit dairy QC.  相似文献   

8.
A sequential carbo-formylation cascade has been developed, involving a free-radical carbo-oximation process, followed by the hydrolysis of the oxime ether. For this purpose, we designed a new SEM O-protected sulfonyl oxime, which enable both rapid radical addition and hydrolysis under mild conditions. The resulting aldehyde-esters were then engaged in various nucleophilic cascades, such as Sakurai allylations or domino-Mukaiyama aldol condensation/lactonizations. Addition of an amine and TMSCN similarly led after Strecker reaction/lactamization to α-cyano-piperidinones in good overall yield. Finally, a Pictet–Spengler/lactamization sequence was devised, which open a new entry toward the tricyclic core of eburnan alkaloids.  相似文献   

9.
The hydrolytic activity of phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) from Bacillus thuringiensis was studied in detail toward mixed liposomes consisting of PI and one of other phospholipids and cholesterol. Among PI-liposomes, small unilamellar vesicles (SUV) were the most sensitive to PI-PLC; the enzymatic hydrolysis of PI in SUV was not less than 10-fold that in large unilamellar vesicles (LUV) or in multilamellar vesicles (MLV). Thus, in a survey of the effects of coexisting lipids on PI-PLC activity, PI-SUV was used. Phosphatidylcholine (PC) was stimulative for the enzyme activity toward PI-SUV at any molar ratio of PC to PI. Also, the effects of the addition of sphingomyelin (SM), phosphatidylethanolamine (PE) and cholesterol on the enzymatic hydrolysis of PI were studied in detail on the basis of concentration of total lipids or PI.  相似文献   

10.
Giner JL 《Organic letters》2005,7(3):499-501
[reaction: see text] Conversion of a carboxylic acid to an orthoester provides protection toward nucleophiles and strong bases. The addition of methyl substituents to the oxetane precursor of the commonly used [2.2.2]-bicyclic OBO orthoester significantly increased the ease of orthoester formation and its resistance to hydrolysis. NMR kinetics show the DMOBO protecting group is formed 85 times faster than the OBO group, and that its stability toward aqueous hydrolysis is 36 times greater. Nucleophilic attack of the ester carbonyl on the oxetane ring was shown by 18O-labeling to take place at the most substituted position.  相似文献   

11.
Bis(isopropoxo) Ti(IV) complexes of diamino bis(phenolato) "salan" ligands were prepared, their hydrolysis in 1:9 water/THF solutions was investigated, and their cytotoxicity toward colon HT-29 and ovarian OVCAR-1 cells was measured. In particular, electronic effects at positions ortho and para to the binding phenolato unit were analyzed. We found that para substituents of different electronic features, including Me, Cl, OMe, and NO(2), have very little influence on hydrolysis rate, and all para-substituted ortho-H complexes hydrolyze slowly to give O-bridged clusters with a t(1/2) of 1-2 h for isopropoxo release. Consequently, no clear cytotoxicity pattern is observed as well, where the largest influence of para substituents appears to be of a steric nature. These complexes exhibit IC(50) values of 2-18 μM toward the cells analyzed, with activity which is mostly higher than those of Cp(2)TiCl(2), (bzac)(2)Ti(OiPr)(2) and cisplatin. On the contrary, major electronic effects are observed for substituents at the ortho position, with an influence that exceeds even that of steric hindrance. Ortho-chloro or -bromo substituted compounds possess extremely high hydrolytic stability where no major isopropoxo release as isopropanol occurs for days. In accordance, very high cytotoxicity toward colon and ovarian cells is observed for ortho-Cl and -Br complexes, with IC(50) values of 1-8 μM, where the most cytotoxic complexes are the ortho-Cl-para-Me and ortho-Br-para-Me derivatives. In this series of ortho-substituted complexes, the halogen radius is of lesser influence both on hydrolysis and on cytotoxicity, while OMe substituents do not impose similar effect of hydrolytic stability and cytotoxicity enhancement. Therefore, hydrolytic stability and cytotoxic activity are clearly intertwined, and thus this family of readily available Ti(IV) salan complexes exhibiting both features in an enhanced manner is highly attractive for further exploration.  相似文献   

12.
The molecular-recognition abilities of a water-soluble chitin derivative, chitin-graft-polysarcosine (2) were investigated using chitinase, lysozyme, and wheat germ agglutinin (WGA). The enzymatic degradabilities of 2 were evaluated using chitinase and lysozyme. The molecular weight of those compounds of 2 with a higher affinity toward water decreased rapidly, as compared with partially deacetylated chitin (1). The 1H NMR spectrum of the low-molecular-weight fraction, yielded after lysozymic hydrolysis, indicated that saccharide residues in the chitinous backbone were specifically recognized by the lysozyme, then beta-glycosidic linkages in the backbone were selectively hydrolyzed. Furthermore, the molecular-recognition ability of the chitinous backbone of graft copolymer 2 toward the lectin WGA was elucidated by the enzyme-linked lectin-binding assay (ELLA). It was revealed that the graft copolymer with a lower degree of substitution (DS) value efficiently interacted with WGA. Interestingly, a graft copolymer having longer polysarcosine side chains showed higher recognition ability toward WGA than that having short side chains.  相似文献   

13.
Quartz crystal microbalance with dissipation (QCM-D) monitoring was performed to investigate the impact of steam treatment (ST) on the enzymatic hydrolysis of lignocellulosic nanofibrils (LCNFs). ST at mild temperatures up to 140 °C mainly affected the hemicellulose content of LCNFs. The hemicellulose constituents in the water-soluble fraction and the residual LCNF were quantified. The impact of changes in hemicellulose by ST on enzymatic hydrolysis was monitored by QCM-D using Acremonium cellulase as a source of multicomponent enzymes including hemicellulases. LCNFs without ST showed distinctive initial changes in frequency and energy dissipation, which differed from those of pure cellulose film, whereas these changes shifted toward typical changes of enzymatic hydrolysis of pure cellulosic films with increasing ST temperature. The QCM-D results suggested that hemicellulose located around cellulose microfibrils is rapidly decomposed, thus exposing the cellulose surface shortly after initial enzymatic hydrolysis, and then the main enzymatic hydrolysis of cellulose occurs.  相似文献   

14.
In this work a sample of SBA-15 mesoporous silica was synthesized and characterized by TEM, XRD, and N2 adsorption. The sample had a high value of specific surface area (1007 m2 g(-1)) and total pore volume (2.1 cm3 g(-1)). The pore diameter was 67 angstroms, so it was large enough to accommodate protein molecules inside the channels. Immobilization by physical adsorption of a commercial lipase preparation from Mucor javanicus was performed at different pH values (pH 5-8). pH 6 gave the highest lipase loading and hydrolytic activity of the corresponding biocatalyst. Chemical modification of the SBA-15 via glutardialdehyde allowed also the enzyme immobilization through chemical adsorption. This preparation was active toward tributyrin hydrolysis. On the contrary, very low activity toward triolein hydrolysis was observed. The reduction of the size of the channels due the immobilization process has been suggested as a possible explanation.  相似文献   

15.
16.
Kinetic and thermodynamic analysis of the 9‐nitrocamptothecin (9NC) hydrolysis reaction in the presence and absence of human serum albumin (HSA) in phosphate‐buffered saline (PBS) of pH 7.4 was carried out by first derivative absorption spectroscopy. The thermodynamic parameters determined in these studies provided a mechanistic explanation toward the endothermic but yet thermodynamically favorable hydrolysis of 9NC at physiological temperature and pH. In the presence of HSA, the apparent rate constant of 9NC hydrolysis was 3–3.5 times higher than in 9NC solutions alone, whereas the apparent equilibrium constant of 9NC hydrolysis was found to increase at a higher extent in the presence of HSA than in PBS with increasing temperature, reaching almost complete hydrolysis of the 9NC to the 9NC‐carboxylate at 315.15 K. Importantly, the Ea of the 9NC hydrolysis reaction in the presence of HSA was determined to be on average 17 kJ mol?1 lower than the Ea determined in plain PBS. Moreover, analysis of binding isotherms constructed for the HSA interaction with 9NC, using infinitely cooperative and independent binding models, demonstrated an incredibly higher binding constant for the 9NC‐carboxylate form as compared to the very weak and concentration‐dependent binding for the 9NC‐lactone species at 310.15 K. Taken together, the preferential association of the carboxylate form with HSA and the lower Ea of 9NC hydrolysis in the presence of HSA provide a mechanistic explanation for the shift of lactone–carboxylate equilibria toward the carboxylate product under physiological conditions of pH and ionic strength. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 693–703, 2010  相似文献   

17.
A method for the regio- and enantioselective protection and deprotection of a number of cyclobutanone derivatives employing the isolated enzyme porcine pancreatic lipase (PPL) has been developed. PPL catalyzes the regioselective acylation or deacylation of the C-3 substituent in (2S,3R)-(+)-bis[hydroxymethyl]-1,1-dimethoxycyclobutanone and its enantiomer. Photochemical ring expansion of the corresponding cyclobutanones in methanol gave anomeric mixtures of the methyl furanosides with stereochemical retention of the ring substituents. The PPL-catalyzed hydrolysis of the acetal derived from (2S,3R)-bis[acetoxymethyl]cyclobutanone resulted in a regioselective reaction of the C-3 acetoxymethyl group. PPL exhibits no hydrolysis activity toward the acetal derived from the enantiomeric cyclobutanone diacetate.

Racemic 2-acetoxymethyl-3,3-dimethylcyclobutanone was converted to its enantiomerically enriched (S)-alcohol by PPL-catalyzed hydrolysis. The corresponding methyl furanoside obtained from the photochemical ring expansion of racemic 2-acetoxymethyl-3,3-dimethylcyclobutanone in methanol is not an effective substrate for PPL mediated hydrolysis.  相似文献   


18.
We have synthesized (S)-(+)-ibuprofen-based hydrogelators that feature dipeptide linkages. In aqueous media, one of these hydrogelators formed robust gels that were stable for several months. Enzyme-mediated hydrolysis offers a route toward the sustained release of this anti-inflammatory agent.  相似文献   

19.
Suh J  Moon SJ 《Inorganic chemistry》2001,40(19):4890-4895
An immobile artificial metallopeptidase having a well-defined active site was constructed on the backbone of cross-linked polystyrene by adjoining a guanidinium moiety to the Cu(II) complex of a tetraaza ligand. The catalyst (CABP) and intermediate polymers were characterized by elemental analysis, IR, inductively coupled plasma measurement, electron probe microanalysis, test for primary amines, binding of Cu(II) ion, and complexation of p-nitrobenzoate ion. CABP effectively catalyzed amide hydrolysis of carboxyl-containing N-acyl amino acids. The catalytic rate of CABP in the hydrolysis of unactivated amides was comparable to that of the catalytic antibody with the highest peptidase activity reported to date. It is proposed that the guanidinium moiety of CABP recognizes the carboxylate anion of the substrate whereas the Cu(II) center participates in the cleavage of the amide bond of the complexed substrate. Several characteristic features of carboxypeptidase A were reproduced by CABP: catalytic action of the metal ion, participation of guanidinium in substrate recognition, hydrolysis of small unactivated amides, and substrate selectivity toward amide bonds adjacent to a carboxylate group.  相似文献   

20.
A novel silver-promoted three-component reaction toward the synthesis of multifunctionalized pyrroles has been developed. This reaction involves an unusual imidazole ring decomposition, presumably via 1,5-isomerization and subsequent hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号