首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray structures of the compounds 4 and 2 have been determined by direct methods and refined by least squares techniques. Crystals of C22H27NO5 and C27H27NO5 are triclinic, space groups with lattice parameters a = 13.652 (5) Å, b = 10.926 (3) Å, c = 7.755 (2) Å, a = 111.554 (4) Å, β = 85.541 (3) Å, γ = 104.813 (4) Å, and a = 15.394 (4) Å, b = 9.674 (3) Å, c = 8.522 (3) Å, a = 111.04 (4) Å, ß = 93.65 (4) Å, γ = 95.01 (4) Å, respectively.  相似文献   

2.
Two new cobalt complexes were successfully synthesized from the reaction of binaphthyl Schiff base 2 with Co(OAc)2 in the presence of sodium methoxide at 80 °C for 24 h and Co(acac)3 in toluene under reflux. Their unique crystal structures are unambiguously disclosed by X‐ray analysis. Complex 3 is triclinic, space group P1 , unit cell dimensions a = 10.742(2) Å, b = 11.153(2) Å, c = 12.715 Å, α = 79.865(3) °, β = 76.053 °, γ = 72.532(4) °, volume 1401.3(5) Å3, Z = 2. Complex 4 is triclinic, space group P1 , unit cell dimensions a = 10.801(2) Å, b = 12.554(3) Å, c = 15.219(3) Å, α = 105.672(4) °, β = 103.048 °, γ = 104.594(4) °, volume 1824.8(7) Å3, Z = 2, calculated density 1.428 Mg m−3. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

4.
The X-ray crystal structures of bis(9,9′-spirobifluorene)-26-crown-4βbenzene solvate (monoclinic, a = 15.47 Å, b 11.265 Å, c = 15.220 Å, β = 91.54°, space group C2) and bis(9,9′-spirobifluorene)-32-crown-6·dichloromethane solvate (tetragonal, a = 20.958 Å, c = 11.779 Å, space group P41212) are described. Both compounds act as enantioselective ionophores for α-aminoalcohols.  相似文献   

5.
Twelve ternary alloys in the Ca‐Cu‐Sn system were synthesized as a test on the existing phases. They were prepared from the elements sealed under argon in Ta crucibles, melted in an induction furnace and annealed at 700 °C or 600 °C. Four ordered compounds were found: CaCuSn (YbAuSn type), Imm2, a = 4.597(1) Å, b = 22.027(2) Å, c = 7.939(1) Å, Z = 12, wR2 = 0.080, 1683 F2 values; Ca3Cu8Sn4 (Nd3Co8Sn4 type), P63mc, a = 9.125(1) Å, c = 7.728(1) Å, Z = 2, wR2 = 0.087, 704 F2 values; CaCu2Sn2 (new structure type), C2/m, a = 10.943(3) Å, b = 4.222(1) Å, c = 4.834(1) Å, β = 107.94(1)°, Z = 2, wR2 = 0.051, 343 F2 values; CaCu9Sn4 (LaFe9Si4 type), I4/mcm, a = 8.630(1) Å, c = 12.402(1) Å, Z = 4, wR2 = 0.047, 566 F2 values. In all phases the shortest Cu‐Sn distances are in the range 2.59‐2.66Å, while the shortest Cu‐Cu distances are practically the same, 2.53‐2.54Å, except CaCuSn where no Cu‐Cu contacts occur.  相似文献   

6.
The new quaternary thiogermanates, ATaGeS5 (A = K, Rb, Cs) were prepared with the use of halide fluxes and the crystal structures of the compounds were determined by single‐crystal X‐ray diffraction methods. The compounds are isostructural and crystallize in space group P\bar{1} of the triclinic system with two formula units in a cell of dimensions: a = 6.937(1) Å, b = 6.950(2) Å, c = 8.844(3) Å, α = 71.07(2)°, β = 78.56(2)°, γ = 75.75(2)°, V = 387.6(2) Å3 for KTaGeS5; a = 6.996(3) Å, b = 7.033(3) Å, c = 8.985(4) Å, α = 70.33(3)°, β = 78.12(4)°, γ = 75.63(4)°, V = 399.6(3) Å3 for RbTaGeS5; a = 7.012(4) Å, b = 7.202(3) Å, c = 9.267(5) Å, α = 68.55(3)°, β = 77.27(4)°, γ = 74.75(4)°, V = 416.2(4) Å3 for CsTaGeS5. The structures of ATaGeS5 (A = K, Rb, Cs) are comprised of anionic infinite two‐dimensional {}_\infty^2 [TaGeS5] layers separated from one another by alkali metal cations (A+). Each layer is made up of tantalum centered sulfur octahedra and pairs of edge‐sharing germanium centered sulfur tetrahedra. The classical charge valence of these compounds should be represented by [A+][(Ta5+)(Ge4+)(S2–)5]. UV/Vis diffuse reflectance measurements indicate that they are semiconductors with optical bandgaps of ca. 2.0 eV.  相似文献   

7.
The iron(III) complexes of the tripodal benzimidazole‐containing ligands tris(2‐benzimidazolylmethyl)amine (ntb), bis(2‐benzimidazolylmethyl)(2‐hydroxyethyl)‐amine (bbimae) and tris(5,6‐dimethyl‐2‐benzimidazolylmethyl)amine (me2ntb) are structural and functional models for intradiol cleaving catechol dioxygenases. The complexes [Fe(ntb)Cl2]Cl · 3 CH3OH ( 1 ; P 1, a = 9.830(2) Å, b = 12.542(3) Å, c = 13.139(3) Å, α = 82.88(3)°, β = 73.45(3)°, γ = 85.53(3)°, V = 1539.2(6) Å3; Z = 2) and [Fe(bbimae)Cl2]Cl ( 2 ; P21/n, a = 7.461(2) Å, b = 18.994(5) Å, c = 14.515(4) Å, β = 98.22(2)°, V = 2035.8(9) Å3, Z = 4) have been characterized by X‐ray crystallography and spectroscopic methods. In the octahedrally coordinated complexes two cis coordination sites – essential for catechol binding – are occupied by chloride ligands. The significant intradiol cleaving catechol dioxygenase activity of the model complexes was examined using 3,5‐di‐tert‐butylcatechol as a substrate.  相似文献   

8.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

9.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   

10.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

11.
Three new Copper(II) polymers coordinated by both rigid and flexible ligands, [Cu(bpy)(C5H6O4)]n ( 1 ), [Cu(bpy)(C6H8O4)]n ( 2 ), and [Cu2(bpy)2(C6H8O4)2]n ( 3 ) (bpy = 4,4′‐bipyridine), have been hydrothermally synthesized and structurally characterized. Complex 1 features a box‐like bilayer motif of (4, 4) net. It crystallizes in triclinic space group with cell parameters: a = 8.1395(6) Å, b = 9.43 12(8) Å, c = 10.5473(8) Å, α = 112.1830(1)°, β = 92.423(2)°, γ = 104.752(2)°, V = 716.31(1) Å3, Z = 2. Complex 2 crystallizes in triclinic space group with a = 8.8652(4) Å, b = 8.9429(4) Å, c = 10.6390(4) Å, α = 89.520(2)°, β = 69.123(2)°, γ = 75.2440(1)°, V = 758.92(6) Å3, Z = 2. Complex 3 crystallizes in monoclinic space group Cc with a = 11.1521(1) Å, b = 15.3961(1) Å, c = 17.7419(1) Å, β = 105.715(3)°, V = 2932.4(5) Å3, Z = 4. Complexes 2 and 3 are isomeric with different coordination modes of adipato ligand. Both of them possess the two‐fold interpenetrated 3‐D pcu topological net.  相似文献   

12.
Rare Earth Halides Ln4X5Z. Part 1: C and/or C2 in Ln4X5Z The compounds Ln4X5Cn (Ln = La, Ce, Pr; X = Br, I and 1.0 < n < 2.0) are prepared by the reaction of LnX3, Ln metal and graphite in sealed Ta‐ampoules at temperatures 850 °C < T < 1050 °C. They crystallize in the monoclinic space group C2/m. La4I5C1.5: a = 19.849(4) Å, b = 4.1410(8) Å, c = 8.956(2) Å, β = 103.86(3)°, La4I5C2.0: a = 19.907(4) Å, b = 4.1482(8) Å, c = 8.963(2) Å, β = 104.36(3)°, Ce4Br5C1.0: a = 18.306(5) Å, b = 3.9735(6) Å, c = 8.378(2) Å, β=104.91(2)°, Ce4Br5C1.5: a = 18.996(2) Å, b = 3.9310(3) Å, c = 8.282(7) Å, β = 106.74(1)°, Pr4Br5C1.3: a = 18.467(2) Å, b = 3.911(1) Å, c = 8.258(7) Å, β = 105.25(1)° and Pr4Br5C1.5: a = 19.044(2) Å, b = 3.9368(1) Å, c = 8.254(7) Å, β = 106.48(1)°. In the crystal structure the lanthanide metals are connected to Ln6‐octahedra centered by carbon atoms or C2‐groups. The Ln6‐octahedra are condensed via opposite edges to chains and surrounded by X atoms which interconnect the chains. A part n of isolated C‐atoms is substituted by 1‐n C2‐groups. The C‐C distances range between 1.26 and 1.40Å. In the ionic formulation (Ln3+)4(X?)5(C4?)n(C2m?)1?n·e? with 0 < n < 1 and m = 2, 4, 6 (C22?, C24? C26?), there are 1 < e? < 5 electrons centered in metal‐metal bonds.  相似文献   

13.
The ligand N,N‐dimethyl(N′‐trimethylsilyl)ethane‐1,2‐diamine (HL) was treated with ZnEt2 in varying stoichiometric ratios to synthesize [EtZnL]2 and [ZnL2] complexes. Crystal data: [EtZnL]2, monoclinic, P21/n, a = 10.0149(5) Å, b = 8.0296(3) Å, c = 16.1689(8) Å, β = 91.715(2)°. [ZnL2], monoclinic, P21/n, a = 8.8457(3) Å, b = 15.4249(6) Å, c = 16.0121(7) Å, β = 92.656(1)°. The former complex is an amido nitrogen bridged dimer with distorted tetrahedral stereochemistry of the zinc atom and the latter is a distorted tetrahedral monomer based on amide/amine chelation.  相似文献   

14.
LaS1.9, CeS1.9, PrS1.9, NdS1.9, and GdS1.9: Five new Lanthanide Polysulfides – Syntheses, Crystal Structures and their Structural Relationship to the ZrSSi Type Crystals of the five new lanthanide polysulfides LaS1.9, CeS1.9, PrS1.9, NdS1.9, and GdS1.9 have been prepared by different synthetic routes. According to X‐ray structure analyses, the compounds adopt the tetragonal CeSe1.9 type structure (space group: P42/n, no. 86) with the lattice parameters a = 9.111(1) Å, c = 16.336(2) Å (LaS1.9), a = 9.015(3) Å, c = 16.168(4) Å (CeS1.9), a = 8.947(3) Å, c = 16.054(4) Å (PrS1.9), a = 8.901(3) Å, c = 16.022(4) Å (NdS1.9), and a = 8.714(1) Å, c = 15.791(1) Å (GdS1.9), respectively. The crystal structure consists of puckered [LnS] double slabs and planar sulfur layers alternating along [001]. Each planar sulfur layer contains disulfide dumbbells, isolated anions and ordered vacancies.  相似文献   

15.
The metal thiophosphates Rb2AgPS4 ( 2 ), RbAg5(PS4)2 ( 3 ), and Rb3Ag9(PS4)4 ( 4 ) were synthesized by stoichiometric reactions, whereas Rb6(PS5)(P2S10) ( 1 ) was prepared with excess amount of sulfur. The compounds crystallize as follows: 1 monoclinic, P21/c (no. 14), a = 17.0123(7) Å, b = 6.9102(2) Å, c = 23.179(1) Å, β = 94.399(4)°; 2 triclinic, P$\bar{1}$ (no. 2), a = 6.600(1) Å, b = 6.856(1) Å, c = 10.943(3) Å, α = 95.150(2)°, β = 107.338(2)°, γ = 111.383(2)°; 3 orthorhombic, Pbca (no. 61), a = 12.607(1) Å, b = 12.612(1) Å, c = 17.759(2) Å; 4 orthorhombic, Pbcm (no. 57), a = 6.3481(2) Å, b = 12.5782(4) Å, c = 35.975(1) Å. The crystal structures contain discrete units, chains, and 3D polyanionic frameworks composed of PS4 tetrahedral units arranged and connected in different manner. Compounds 1 – 3 melt congruently, whereas incongruent melting behavior was observed for compound 4 . 1 – 4 are semiconductors with bandgaps between 2.3 and 2.6 eV and thermally stable up to 450 °C in an inert atmosphere.  相似文献   

16.
Sheets of La6(C2) Octahedra in Lanthanum Carbide Chlorides – undulated and plane The reaction of Ln, LnCl3 (Ln = La, Ce) and C yields the hitherto unknown compounds La8(C2)4Cl5, Ce8(C2)4Cl5, La14(C2)7Cl9, La20(C2)10Cl13, La22(C2)11Cl14, La36(C2)18Cl23 and La2(C2)Cl. The gold‐ resp. bronze‐coloured metallic compounds are sensitive to moisture. The reaction temperatures are 1030 °C, 1000 °C, 970 °C, 1020 °C, 1020 °C, 1080 °C and 1030 °C in the order of compounds given, which mostly crystallize in the monoclinic space group P21/c with a = 7.756(1) Å, b = 16.951(1) Å, c = 6.878(1) Å, β = 104.20(1)° (La8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.798(1) Å, β = 104.05(1)° (Ce8(C2)4Cl5), a = 7.669(2) Å, b = 16.784(3) Å, c = 6.789(1) Å, β = 104.05(3)° (La20(C2)10Cl13), a = 7.770(2) Å, b = 47.038(9) Å, c = 6.901(1) Å, β = 104.28(3)° (La22(C2)11Cl14) and a = 7.764(2) Å, b = 77.055(15) Å, c = 6.897(1) Å, β = 104.26(3)° (La36(C2)18Cl23), respectively. La14(C2)7Cl9‐(II) crystallizes in Pc with a = 7.775(2) Å, b = 29.963(6) Å, c = 6.895(1) Å, β = 104.21(3)° and La2(C2)Cl in C2/c with a = 14.770(2) Å, b = 4.187(1) Å, c = 6.802(1) Å, β = 101.50(3)°. The crystal structures are composed of distorted C2 centered La‐octahedra which are condensed into chains via common edges. Three and four such chains join into ribbons, and these are connected into undulated layers with Cl atoms between them. The variations of the structure principle are analyzed systematically.  相似文献   

17.
Four inorganic‐organic hybrid compounds with the formulae (1,10‐phen)(VO2)(IO3) ( 1 ), (2,2′‐bipy)(VO2)(IO3) ( 2 ), [Cu3(2,2′‐bipy)3Cl3(IO3)2]·I1.5 ( 3 ), and [Cu(2,2′‐bipy)(H2O)(IO3)2]· (H2O)2 ( 4 ) are hydrothermally synthesized at 120 °C for 6 d and characterized by single‐crystal X‐ray diffraction. The use of two different bidentate organodiamine ligands 1,10‐phen and 2,2′‐bipy in the V/I/O system gives rise to compounds 1 and 2 , which crystallize in a monoclinic system with the space group C2/c, a = 17.8131(6) Å, b = 15.0470(7) Å, c = 12.9902(4) Å, β = 133.095(2)°, V = 2542.49(17) Å3 for 1 and space group P21/c, a = 13.3095(5) Å, b = 15.0993(8) Å, c = 13.0454(4) Å, β = 116.971(2)°, V = 2335.88(17) Å3 for 2 . The use of the bidentate organodiamine ligand 2,2′‐bipy in the Cu/I/O system gives rise to the variety in the structure of products 3 and 4 , which crystallize in a triclinic system with the same space group . a = 8.5143(2) Å, b = 10.4908(3) Å, c = 22.8420(6) Å, α = 93.769(10)°, β = 91.723(10)°, γ = 112.111(10)°, V = 1882.83(9) Å3 for 3 and a = 6.731(6) Å, b = 10.110(4) Å, c = 12.899(6) Å, α = 106.00(5)°, β = 95.45(4)°, γ = 107.69(6)°, V = 788.4(9) Å3 for 4 . The solid‐state structures of the compounds 1 and 2 have chains with repeat units of alternative corner sharing of [VO4N2] octahedra and [IO3] pyramids. Compound 3 is a chain containing [IO3] pyramids and [VO4N] square pyramids and compound 4 consists of Cu(2,2′‐bipy)2+ linked by one water molecule and two [IO3] pyramids. The thermal stabilities of the compounds are investigated.  相似文献   

18.
Three new oxo‐centered trinuclear mixed‐bridged carboxylate complexes with terminal unsaturated ligands ([M2M′(μ3‐O)(μ‐O2C3H3)5(μ‐O4C6H7)(O2C3H3) (H2O)2]·2H2O [M = Fe, M′ = Fe ( 1 ); M = Fe, M′ = Cr ( 2 ); M = Cr, M′ = Fe ( 3 )]) have been synthesized and characterized by means of elemental analyses, IR spectra and crystal structure analyses. The compounds crystallize isotypically in the orthorhombic space group type Pbcn with a = 24.622(3) Å, b = 16.304(2) Å, c = 17.491(2) Å, V = 7021.5(15) Å3 ( 1 ), a = 24.708(5) Å, b = 16.290(2) Å, c = 17.394(2) Å, V = 7001.0(18) Å3 ( 2 ), a = 24.611(4) Å, b = 16.300(3) Å, c = 17.359(3) Å, V = 6964(2) Å3 ( 3 ), and Z = 8. The infrared spectra show resolved bands arising from νasym(OCO) and νsym(OCO) vibrations of monodentate and bridging carboxylate ligands along with those of νasym(M2M′O) vibrations in the complexes.  相似文献   

19.
The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

20.
Allylthiourea crystals grown from water and from ethanol have been found to belong to the space groupP21/c and P21/m or related, respectively. The corresponding unit cell parameters are a = 13.45 Å, b = 17.33 Å,c = 14.38 Å, β = 96.6°, and d = 1.18g/cm3 for water-grown crystals, and a = 14.65 Å, b = 17.18 Å, c = 13.15 Å, β = 95.5°, and 1.17 g/cm3 for ethanol-grown crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号