首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of separation conditions on peak broadening is usually estimated by the number of theoretical plates. Using the data available in literature and experimental data, it is shown that in pressure‐assisted capillary electrophoresis the plate number is not directly related to the separation capability of conditions used. The experiments at different electrolyte flow velocities demonstrate that a higher plate number (the best separation efficiency) can be obtained with a lower peak resolution. Since ions are separated by electrophoresis due to the difference in electrophoretic mobilities, the peak width in terms of electrophoretic mobility is suggested as a new peak broadening parameter describing the separation capability of the conditions used. The parameter can be calculated using the tailing factor and the temporal peak width at 5% of the peak height. A simple equation for the resolution calculation is derived using the parameter. The advantage of the peak width in terms of mobility over other parameters is shown. The new parameter is recommended to be used not only in pressure‐assisted capillary electrophoresis but also in general capillary electrophoresis when in a number of runs the virtual separative migration distance and separation capability of the conditions used change widely.  相似文献   

2.
The study and modelling peak shape of in capillary electrochromatography (CEC), obtained using butyl acrylate (BA)-based monolithic columns, is described in this article. A modified-Gaussian model, which is a function of conventional experimental parameters: retention time (tR), peak height (H0) and standard deviation (σ0) at the peak maximum, and left (A) and right (B) halfwidths, was used to describe the peaks of thiourea and several polyaromatic hydrocarbons compounds, which were eluted under several applied voltages. A mean relative error below 2% in the prediction of peak shape is obtained. Based on peak parameters, an easy and reliable estimation of global chromatographic performance, efficiency and peak capacity of BA-based monoliths was also considered. A comparison in terms of chromatographic performance of BA-based monoliths in CEC with CE mode and RPLC microparticulate columns was also performed.  相似文献   

3.
The prediction of the peak width at half height is an important aspect in the optimization of the chromatographic operating conditions. In this paper, a linear relationship, between the peak widths at half height and the retention values with various isocratic elution is observed. In gradient elution, however, the relationship between the peak widths at half height and the so-called invented retention values that correspond to the mobile phase composition by eluting the solute from the column end is developed. We believe that there is almost the same band width at half height inside the column (in unit of length) for different solutes. The peak width at half height in the chromatogram (in unit of time) is mainly determined by the capacity factor of the solute when it is eluted from the column end. The larger the capacity factor of a solute eluted from the column end, the more slowly will be the solute eluted from the column end and the wider will be the peak width at half height. It is possible to predict the peak width at half height in various isocratic and gradient elutions by using this linear relationship.  相似文献   

4.
The present paper deals with the role of the solvent on thermal peak broadening. One main solvent property that determines the magnitude of the temperature gradient due to the generation of Joule heat in capillary zone electrophoresis is the thermal conductivity. As organic solvents have lower thermal conductivity than water (methanol and acetonitrile, e.g., nearly by a factor of 3) it can be hypothesized that the temperature gradient inside the capillary is more pronounced in organic solvents compared to an aqueous solution. On the other hand, the temperature dependence of the ion mobility (which is responsible for the velocity profile and thus for thermal peak broadening) is smaller in organic solvents. To get insight into the thermal effect of the solvent, first the temperature of a solution in a cylindrical tube was calculated utilizing the heat balance equation. It was shown that the two theoretical models most common in the literature (based on the analytical solution or on an assumption of the parabolic temperature profile in the tube, respectively) give the same results. The latter model was chosen for the further calculations, adding a quadratic term to express the electric conductivity as a function of the temperature. The temperature at the inner capillary wall and center as function of the capillary dimensions and the electric power was computed for electrolytes with a given conductivity at 25.0 degrees C with water, methanol, and acetonitrile as solvents. Capillary cooling systems used were circulating liquid cooling, enforced air-cooling, and natural convection in still air. The mean temperature (averaged over the cross section) resulting from Joule heating was compared with experimentally determined temperatures established upon application of an electric field; the latter temperature was derived from the measurement of the electric conductance of the background electrolyte solution and its (measured) temperature dependence. All investigations were carried out with solutions of the same initial electric conductivity (about 0.5 S.m(-1) at 25.0 degrees C). Agreement is found for natural convection conditions, and the deviation between theoretical and experimental results for the forced air and circulated liquid cooling systems can be related to the poorly defined thermal conditions of the capillaries in commercial instrumentation (with a part in a thermostated cassette and a part outside). For given conditions the temperature gradients in the organic solvents exceed largely those in water, independent of the type of cooling. As a consequence, the thermal plate height is significantly larger in organic solvents, at least under conditions where the deviation from the Nernst-Einstein limiting case is not too high. However, even for the maximum applicable field strengths the thermal plate height contributions are negligible compared to longitudinal diffusion in all solvents.  相似文献   

5.
By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ~1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ~500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ~5-fold to 8-fold higher than typically reported for GC×GC.  相似文献   

6.
R. Delley 《Chromatographia》1984,18(7):374-382
Summary In chromatography the peak shape is often described by the method of statistical moments and therefore the second central moment is considered as the correct measure of peak width. Using the exponentially modified Gaussian peak model as an example and a criterion more related to chromatography, the extent of separation, it is shown that for nearly Gaussian peaks the width measured at 1/8 of the peak height is a more meaningful width parameter to evaluate the efficiency of chromatography and the resolution. The second central moment gives too much weight to the remote parts of the tail of the usual, somewhat skewed, peak.  相似文献   

7.
The paper reports a study on the role of ion-pairing behind peak deformations, e.g. peak splitting and even peak disappearance, during the elution of a peptide at highly overloaded conditions in reversed-phase chromatography. Deformation of component peaks is not uncommon in chromatography. There are reports which discuss their occurrence, but mostly at analytical scale, while their occurrence is quite common also in the preparative scale, as in the case discussed in this work. This paper first describes the conditions leading to peak splitting and peak disappearance of an industrial peptide, then explains the plausible reasons behind such behaviour, and finally with experimental analysis demonstrates the role of ion-pairing in causing such behaviour.  相似文献   

8.
The effective plate height, heff, is considered to be a better measure of the efficiency of capillary column than the conventional plate height, h, in isothermal conditions. By using experimental data of 1-alcohols and n-alkanes, 2-ketones and 1-alkenes measured on capillary columns coated with non-polar stationary phases in isothermal and isobaric conditions, the peak width at half height is predicted with a function similar at that of adjusted retention time. The results obtained under different analytical conditions as the head pressure and the temperature of the column confirm the validity of the model, whose parameters are linear, and as a consequence a unique solution is obtained.  相似文献   

9.
郝卫强  刘丽娟  沈巧银 《色谱》2021,39(1):10-14
谱带压缩效应是梯度洗脱区别于等度洗脱的重要特征。经典的范德姆特(van Deemter)理论塔板高度方程基于等度洗脱推导得到,因此不能对谱带压缩效应进行描述。在梯度洗脱中,保留因子(k)会随流动相组成(φ)的改变而发生变化,这就使得对梯度洗脱机理的研究要比等度洗脱复杂许多。该文对近10年来谱带压缩效应的研究进展,特别是溶剂强度模型(即描述ln kφ关系的数学表达式)的非线性特征对谱带压缩因子(G)的影响进行了述评,指出为了更好地认识谱带压缩效应需要将这种非线性因素考虑在内。  相似文献   

10.
N. S. Wu  C. P. Cai  Y. Yang 《Chromatographia》1990,30(3-4):220-222
Summary Based on the exponentially modified Gaussian (EMG) function, a new approach is presented for the quantitation of a partially overlapped peak pair. This approach can be employed in a wide range of peak area ratio and asymmetry, provided that the relative valley between the two peaks is not greater than 55%. The first peak area is calculated by the use of the ratio of the front half-width at height fraction 0.1 to that at heigt fraction 0.5. The second peak area is calculated by subtracing the first peak area from the total area which is provided by a microprocessor-based integrator. The relative error for the first peak never exceeds ±5%, but this is not always the case for the second peak. The relative error for the second peak depends not only on the accuracy of the total area and that of the first peak area but on area ratio as well.  相似文献   

11.
A bi-dimensional (non-orthogonal) chromatographic system made of two columns of different length (longer along the first direction and shorter on the second) but packed with identical (or similar) materials has been employed to perform automated on-line fraction analysis and peak deconvolution of multicomponent overloaded band profiles. Multicomponent overloaded peaks, eluted from the first column, are sampled through a remotely-controlled switching valve and fractions are injected, under analytical conditions, directly into the second direction. This set-up serves a twofold purpose. First of all, it has been possible to use linear calibration curves for detector calibration (DC). Secondly, since single component peaks were resolved on the second direction, individual concentration profiles have been obtained beneath the envelop of overlapping bands. All the information necessary to operate the bi-dimensional system can be achieved by analyzing the chromatographic behavior of the mixture on the shorter column under linear conditions. Therefore, solutions of unknown concentration can be prepared and their composition reconstructed with a simple chromatographic run. Two- and three-component overloaded mixtures have been employed to validate the system.  相似文献   

12.
13.
左敏  陈义 《高等学校化学学报》2007,28(10):1875-1877
以泰勒分散理论为基础, 首次采用动态涂层毛细管来准确和快速测定蛋白质分子的扩散系数.  相似文献   

14.
Chen X  Xie J  Li C  Hu Z  Chen X 《Journal of separation science》2004,27(12):1005-1010
Peak splitting has a detrimental effect on analyses by capillary electrophoresis. Many papers have reported it and several mechanisms have been proposed to explain the phenomenon. We investigated the electrophoretic behavior of an amphoteric analyte, levodopa, in phosphate buffer and observed a peak splitting phenomenon at moderate sample concentrations and under general analytical conditions, even without organic solvent. The dependence of effective mobility on pH was taken into account and pKa values of 2.30, 8.11, and 9.92 were obtained for levodopa. Then, we constructed pH-dependent distribution diagrams of levodopa and phosphate species present in aqueous solution and proposed that the most relevant factors contributing to peak splitting are the presence of ionizable groups in the analyte molecule and the occurrence of ionization, yielding charged species which interacted with buffer electrolyte species in a definite pH range to form complexes. This result is different from those presented in the literature and broadens our understanding of amphoteric analyte peak splitting.  相似文献   

15.
The general approach to the detailed characterizing of peak properties based on the use of characteristic points on a peak contour located at the certain levels is proposed. Three basic functions of peaks have been chosen which are submitted in normalized form on height and width. The ability to characterize a peaks shape of a certain analytical series is shown by an example of series of analytical peaks of thallium obtained by stripping voltammetry at linear and step potential sweep. Also the proposed shape parameters are studied for groups of stripping voltammetry and chromatographic peaks.  相似文献   

16.
Schoetz G  Trapp O  Schurig V 《Electrophoresis》2001,22(12):2409-2415
Dynamic capillary electrophoresis (DCE) and computer simulation of the elution profiles with the theoretical plate and the stochastic model has been applied to determine the isomerization barriers of the three dipeptides L-alanyl-L-proline, L-leucyl-L-proline, and L-phenylalanyl-L-proline. The separation of the rotational cis-trans isomers has been performed in an aqueous 70 mM borate buffer at pH 9.5. Interconversion profiles featuring plateau formation and peak broadening were observed. To determine the rate constants k1 and k(-1) of the cis-trans isomerization in dynamic capillary electrophoresis, equations have been derived for the theoretical plate model and stochastic model. The electropherograms were simulated with the ChromWin software which uses the experimental data plateau height h(plateau), peak width at half height Wh, the total migration times of the cis-trans isomers tR and the electroosmotic break-through time t0 as well as the peak ratio [cis]/[trans]. From temperature-dependent measurements, the rate constants k1 and k(-1) and the kinetic activation parameters deltaG#, deltaH# and deltaS# of the cis-trans isomerization of the three dipeptides were obtained.  相似文献   

17.
In this study it is demonstrated that much higher concentrations of bases dissolved in water can be injected in capillary zone electrophoresis without causing peak deterioration, e.g., peak splitting, if it is the co-ion that buffers instead of the counter-ion. Those findings can be utilised to control peak shapes and in this way an increase in the sample load and indirectly a decrease in the detection limits of impurities in the sample can be obtained. Good results were obtained with 4-aminobutyric and 6-aminocaproic acids as buffering co-ions. Another possibility evaluated successfully was that of using a dibasic acid, malic acid or succinic acid. With an electrolyte containing both succinic acid and 6-aminocaproic acid at pH 4.5, it was possible to load at least 10-20 times more of the test substances imidazole, creatinine or 2-aminopyrimidine dissolved in water than with an electrolyte at the same pH containing acetic acid and tris(hydroxymethyl)aminomethane.  相似文献   

18.
Our study attempts to find an approach to distinguishing between the contribution to peak spreading in capillary zone electrophoresis (CZE) due to protein microheterogeneity and that due to interaction with the capillary wall, by analyzing correlations between observed peak spreading and peak asymmetry. The peak asymmetry was measured as ln[(tm-t1)/(t2-tm)] where tm, t1, and t2 are migration times at the mode of the peak and at the intersection of the peak width at half-height with the ascending and descending limbs, respectively. Two isoforms of recombinant green fluorescent protein (GFP-1 and GFP-2, 27 kDa molecular mass), glucose-6-phosphate dehydrogenase (GPD, 104 kDa), and the naturally fluorescent protein R-phycoerythrin (PHYCO, 240 kDa) were subjected to CZE in polyacrylamide-coated fused-silica capillaries of 50 and 100 microns diameters under varying conditions of protein concentration, field strength, and the initial zone length. Under conditions such that contributions to peak spreading from axial diffusion, thermal effects, and electrophoretic dispersion are negligible, the analysis of the interrelations between peak width and peak asymmetry was found to allow a conclusion as to the cause of peak spreading in CZE of protein. It appears that the peak width of GFP-2 originates mostly in protein microheterogeneity while that of GFP-1 is due to protein-capillary wall interactions. For PHYCO, both microheterogeneity and protein-capillary wall interactions contribute to peak spreading. GPD exhibits relatively little microheterogeneity or interaction with capillary walls. Thus, its peak width appears to be mostly affected by an extracolumn source of spreading such as the initial zone length.  相似文献   

19.
The knowledge of the symmetry of chromatographic peaks is extremely important regarding the digital signal processing. The significant deviation of the peak shape from the symmetrical peak makes hardly possible the acquisition of chromatographic signal information, such as the retention time, the peak area, the peak width at half peak height, the peak overlapping, etc. In the literature one can find many methods for the determination of the asymmetry factor. For example it is suitable to calculate the skewness from the third central moment. However in case of noisy baseline the value of the skewness oscillates highly depending on the number of points used for the mathematical calculation. In this work a new method is presented for the determination peak shape asymmetry. We order mathematical function to the chromatographic peaks by fitting, and then symmetrical curve is generated with the same peak maximum position and height, the peak width is fitted. The difference of the two functions is constituted and areas of the data differences are calculated, which are really characteristics of the peak asymmetry. Correlation between the area of the difference signal and the asymmetry factor is established. The method was applied for different types of chromatographic peak shapes and the results were interpreted.  相似文献   

20.
Peak areas, peak heights, and apparent theoretical plate numbers were examined as a function of sample injection times by use of the batch-type CL detection cell. Comparing the experimental data with those obtained by absorption detector, some considerations were carried out about the peak shape. The peak shape in CL detection was influenced by not only concentration distribution of sample in a sample zone but also sample diffusion and CL reaction at the capillary outlet. The sample injection time of ca. 35 s was recommended for the present CE with CL detector. The injection time much influenced peak shape as well as sensitivity in the CL detection cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号