首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Absolute rate constants and their temperature dependencies were determined for the addition of hydroxymethyl radicals (CH2OH) to 20 mono- or 1,1-disubstituted alkenes (CH2 = CXY) in methanol by time-resolved electron spin resonance spectroscopy. With the alkene substituents the rate constants at 298 K (k298) vary from 180 M?1s?1 (ethyl vinylether) to 2.1 middot; 106 M?1s?1 (acrolein). The frequency factors obey log A/M?1s?1 = 8.1 ± 0.1, whereas the activation energies (Ea) range from 11.6 kJ/mol (methacrylonitrile) to 35.7 kJ/mol (ethyl vinylether). As shown by good correlations with the alkene electron affinities (EA), log k298/M?1s?1 = 5.57 + 1.53 · EA/eV (R2 = 0.820) and Ea = 15.86 ? 7.38 · EA/eV (R2 = 0.773), hydroxymethyl is a nucleophilic radical, and its addition rates are strongly influenced by polar effects. No apparent correlation was found between Ea or log k298 with the overall reaction enthalpy. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
For the rate constant of addition of tert-butyl radicals to acrylonitrile at T = 300 K in solution modulated ESR spectroscopy and muon spin rotation yield 106 M?1 s?1 and 2.4 × 106 M?1 s?1. The addition of pivaloyl radical to acrylonitrile proceeds with Arrhenius parameters log A/M?1 s?1 = 7.7 and Ea = 11.5 kJ/ mol. The results are discussed in terms of polar effects in radical addition reactions.  相似文献   

3.
An electron paramagnetic resonance (EPR ) technique was used to show that simple alkyl radicals readily abstract hydrogen from 1,4-cyclohexadiene. Rate constants for the reaction were ca. 104–105 M?1 s?1 at 300 K and activation energies 5–7 kcal mol?1. For the stabilized radicals, allyl and benzyl, the rate constants were <102 M?1 s?1 at 300 K. The data suggest that 1,4-cyclohexadiene could be used as an effective trap to probe rearrangement reactions of carbon centered radicals and biradicals.  相似文献   

4.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals Ph?H2 and Ph?Me2 to a variety of alkenes in toluene solution. To vinyl monomers CH2=CXY, Ph?H2 adds at the unsubstituted C-atom with rate constants ranging from 14 M ?1S ?1 (ethoxyethene) to 6.7 · 103 M ?1S ?1 (4-vinylpyridine) at 296 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.6 ± 0.3, whereas the activation energy varies with the substituents from ca. 51 kJ/mol to ca. 26 kJ/mol. The rate constants and the activation energies increase both with increasing exothermicity of the reaction and with increasing electron affinity of the alkenes and are mainly controlled by the reaction enthalpy, but are markedly influenced also by nucleophilic polar effects for electron-deficient substrates. For 1,2-disubstituted and trisubstituted alkenes, the rate constants are affected by additional steric substituent effects. To acrylate and styrenes, Ph?Me2 adds with rate constants similar to those of Ph?H2, and the reactivity is controlled by the same factors. A comparison with relative-rate data shows that reaction enthalpy and polar effects also dominate the copolymerization behavior of the styrene propagation radical.  相似文献   

5.
Absolute rate constants for the addition of the 2-hydroxy-2-propyl radical to 18 substituted alkenes (CH2 = CXY) were determined at (296 ± 1) K in 2-propanol by time-resolved electronspin-resonance spectroscopy. With alkene substitution the rate constants vary by more than 6 orders of magnitude. For 3,3-dimethyl-but-1-ene the temperature dependence is given by log k/M?1 · s?1 = 6.4 minus;; 19.1/Θ where Θ = 2.303 RT in kJ/mol?1. As shown by a good correlation with the alkene electron affinities, log k296/M?1 · s?1 = 6.46 + 1.71 · EA/eV (r = 0.930), 2-hydroxy-2-propyl is a very nucleophilic radical, and its addition rates are highly governed by polar effects. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Absolute rate constants for the addition of the 2-cyano-2-propyl radical to 26 alkenes CH2=CXY at 315 K were determined in solution by time-resolved electron-spin-resonance spectroscopy. They vary with the alkene substituents from 30 M?1 s?1 to 7′010 M?1 s?1. For styrene the temperature dependence is given by log k/M?1 s?1 = 7.7 ? 26.1/Θ where Θ = 2.303 RT in kJ/mol. An analysis of the substituent effects in terms of polar and enthalpic factors reveals a dominant influence of the overall reaction enthalpy. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Perfluorobutylperoxyl radicals were produced by radiolytic reduction of perfluorobutyl iodide in aerated methanol solutions. Rate constants for the reactions of this peroxyl radical with various organic compounds were determined by kinetic spectrophotometric pulse radiolysis. The rate constants for alkanes and alkenes were determined by competition kinetics using chlorpromazine as a reference. The results indicate that hydrogen abstraction from aliphatic compounds takes place with a rate constant that is too slow to measure in our system (<105 M?1 s?1), and that abstraction of allylic and doubly allylic hydrogens is slow compared with addition. Addition to alkenes takes place with rate constants of the order of k = 106 ? 108 M?1 s?1. Good correlation was obtained between log k and the Taft substituent constants σ* for the various substituents on the double bond. Perfluorobutylperoxyl radical is found to be more reactive than trichloromethylperoxyl and other peroxyl radicals.  相似文献   

8.
The reactions of tert-butoxyl radicals with amines, leading to the formation of α-aminoalkyl radicals, and the reactions of these with the electron acceptor methyl viologen have been examined using laser flash photolysis techniques. For example, the radicals CH3?HNEt2 and HOCH2?H N(CH2CH2OH)2 react with methyl viologen with rate constants equal to (1.3 ± 0.1) × 109 and (2.1 ± 0.4) × 109M?1 · s?1, respectively, in wet acetonitrile at 300 K.  相似文献   

9.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals ·CH2CN and ·CH2CO2C(CH3)3 to a variety of mono- and 1,1-disubstituted and to selected 1,2- and trisubstituted alkenes in acetonitrile solution. To alkenes CH2?CXY, ·CH2CN adds at the unsubstituted C-atom with rate constants ranging from 3.3·103 M ?1S ?1 (ethene) to 2.4·106 M ?1S ?1 (1,1-diphenylethene) at 278 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.7 ± 0.3. ·CH2CO2C(CH3)3 shows a very similar reactivity with rate constants at 296 K ranging from 1.1·104 M ?1S ?1 (ethene) to 107 M ?1S ?1 (1,1-diphenylethene) and frequency factors log (A/M ?1S ?1) = 8.4 ± 0.1. For both radicals, the rate constants and the activation energies for addition to CH2?CXY correlate well with the overall reaction enthalpy. In contrast to the expectation of an electro- or ambiphilic behavior, polar alkene-substituent effects are not clearly expressed, but some deviations from the enthalpy correlations point to a weak electrophilicity of the radicals. The rate constants for the addition to 1,2- and to trisubstituted alkenes reveal additional steric substituent effects. Self-termination rate data for the title radicals and spectral properties of their adducts to the alkenes are also given.  相似文献   

10.
Spectrophotometric pulse radiolysis experiments with cis- and trans-stilbene (Sc and St) in 2-propanol show that both isomers react with the solvated electron with a rate constant of 4.5 × 109 M?1 s?1. The absorption spectra of the two anion radicals have maxima at 496 and 486 nm, respectively. The absorbances at 400–550 nm disappear exponentially corresponding to a pseudo first order protonation of the anion radicals. The rate constants for the protonation of the cis isomer is 6.4 × 105 and of the trans isomer 0.7 × 105 s?1. In mixtures of cis- and trans-stilbene the electron transfer
has a forward rate constant of 9 × 107 M?1 s?1 while the back reaction has a rate constant of 2.15 × 107 M?1 s?1. An equilibrium constant K = 4.2 is calculated.  相似文献   

11.
The kinetic behavior of the thiyl radical in the solution containing polyisoprenes and polybutadienes has been studied by the flash photolysis method. For benzothiazole-2-thiyl radical, the addition rate constants toward these polymers and the model compounds of the polymers were evaluated. The relative reverse rate constants and equilibrium constants were also estimated. The addition rate constants decrease with an increase in the degree of polymerization; the ratio of the addition rate constant for polyisoprene (3.1 × 104 M?1 s?1 (in monomer unit); Mv = 674,000) to that for 2-methyl-2-butene (1.5 × 105 M?1 s?1) is about 1/5. This indicates that the polymer chain effect appears in the free-radical addition reaction. The relative reverse rate constants for the polymers are also smaller than those for 2-methyl-2-butene, suggesting a kind of polymer effects; i.e., it can be presumed that the bonded-thiyl radicals migrate very rapidly to the neighboring double bonds in the polymer. Significant differences in the rate parameters were observed between polyisoprene and polybutadiene, between cis- and trans-polyisoprenes, and between 1,4- and 1,2-polybutadienes.  相似文献   

12.
The flash photolysis of aqueous solutions of rhodizonic and croconic acids has been studied in the presence and absence of electron acceptors. No transient absorption which could be identified with an excited state was observed with either anion. The rate of recovery of the ground state in the absence of additives was a first-order process with both acids and gave rate constants for deactivation of the excited state, kD, of 2.4 × 105 s?1 for rhodizonate and 2.8 × 105 s?1 for croconate. With croconate dianion in the presence of three acceptors, 4-nitrobenzylbromide, methylviologen, and biacetyl, a transient absorption was detected, with a maximum absorbance at 500 nm, and was tentatively identified with the monoanion radical, formed following electron transfer to the acceptor. From the rate of growth of the transient, rate constants for the rate of electron transfer to the acceptor were measured as follows: 4-nitrobenzylbromide: 2.8 × 109 M?1 s?1; methyl viologen: 3.7 × 1010 M?1 s?1; and biacetyl: 2.0 × 108 M?1 s?1. The significance of the measurements is discussed in relation to the mechanism proposed for the photochemical reactions of these dianions. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The absolute rate constants for the reactions of NH2 radicals with ethyl, isopropyl, and t-butyl radicals have been measured at 298 K, using a flash photolysis–laser resonance absorption method. Radicals were generated by flashing ammonia in the presence of an olefin. A new measurement of the NH2 extinction coefficient and oscillator strength at 597.73 nm was performed. The decay curves were simulated by adjusting the rate constants of both the reaction of NH2 with the alkyl radical and the mutual interactions of alkyl radicals. The results are k(NH2 + alkyl) = 2.5 (±0.5), 2.0 (±0.4), and 2.5 (±0.5) × 1010 M?1·s?1 for ethyl, isopropyl, and t-butyl radicals, respectively. The best simulations were obtained when taking k(alkyl + alkyl) = 1.2, 0.6, and 0.65 × 1010M?1·s?1 for ethyl, isopropyl, and t-butyl radicals, respectively, in good agreement with literature values.  相似文献   

14.
Absolute rate constants and some of their Arrhenius parameters are reported for the addition of the 1‐[(tert‐butoxy)carbonyl]ethyl radical (MeC . HCO2Me3) to several mono‐ or 1,1‐disubstituted alkenes in acetonitrile as obtained by time‐resolved electron spin resonance spectroscopy. At 295 K, the rate constants range from 470 M −1 s−1 (but‐1‐ene) to 2.4⋅105 M −1 s−1 (1,1‐diphenylethene), the experimental activation energies range from 26.8 kJ/mol (but‐1‐ene) to 14.7 kJ/mol (styrene), and the frequency factors obey on the average log (A/M −1 s−1)=7.9±0.5. The rate constants of the secondary 1‐[(tert‐butoxy)carbonyl]ethyl radical are close to the geometric mean of those of the related primary [(tert‐butoxy)carbonyl]methyl and the tertiary 2‐(methoxycarbonyl)propan‐2‐yl radicals. The activation energies for addition of these three carboxy‐substituted alkyl radicals are mainly governed by the addition enthalpy but are also substantially lowered by ambiphilic polar effects. The results support a previously derived predictive analysis, and relations to rate constants of acrylate polymerizations are discussed.  相似文献   

15.
Trichloromethylperoxyl radicals were produced by pulse radiolysis of air saturated solutions containing CCl4. The rate constants for the reaction of CCl3O2 radicals with zinc tetraphenylporphyrin (ZnTPP) were determined in various solvents. They were found to vary between 3 × 107 and 3 × 109 M?1 s?1. The changes in rate constants result from complexation of ZnTPP with the different solvents, but did not correspond to changes in redox potential of ZnTPP. The rate constants were found to depend on the strength of the axial complexation, indicating an inner sphere mechanism whereby the radical binds to the metal prior to electron transfer.  相似文献   

16.
The rate constants of self-reactions of ketyl radicals of acetophenone in n-heptane [2k = (3.2 ± 0.5) × 109 M?1 s?1] and diphenylaminyl radicals in toluene [2k = (3.3 ± 0.5) × 107 M?1 s?1] have been determined at 298 K using the flash photolysis technique. The rate constant of ketyl radicals is equal to the calculated diffusion constant and, therefore, this reaction is diffusion-controlled. The aminyl radical recombination rate is independent of the viscosity of the toluene/vaseline oil binary mixture (0.55 ? η ? 12 cP) and this reaction is activation-controlled. Reactivity anisotropy averaging due to the cage effect has been considered for ketyl and some other radicals. On the basis of the analysis it has been proposed that ketyl recombination involves formation of not only pinacol, but also iso-pinacols.  相似文献   

17.
Consideration of current information on the dependence of the electron transfer rate on the radial separation distance and on the reactants′ radial distribution function suggests for adiabatic transfers a frequency factor closer to 1012M?1 s?1 than to 1011M?1 s?1. One effect is to raise the λ values estimated from self-exchange rate constants, and to extend thereby the range of ΔG°'s in which the “inverted region′” is masked by a diffusion-controlled reaction rate.  相似文献   

18.
Rate constants for the reactions of tert-butoxy radicals (generated by the thermal decomposition of di-tert-butylperoxyoxalate) with several sulfur containing compounds have been measured at 310 K in benzene. Hexanethiol (k = 6.5 × 107M?1s?1) reacts considerably faster than alkyl sulfides and disulfides. For these compounds the reaction rate constants are slightly dependent on the α-hydrogen type, changing (when it is expressed per hydrogen atom) only a factor 5 for sulfides and 3 for disulfides when the α-hydrogen is changed from primary (methyl) to tertiary (isopropyl). The data obtained are compared to those found for the deactivation of the benzophenone triplet. Values of ktert-butoxy/kbenzophenone range from ca 10?3 (di-tert-butyl disulfide) to 7.5 (hexanethiol). The results obtained are rationalized in terms of bond strength, steric hindrance, and charge transfer contributions to the critical configuration energies.  相似文献   

19.
Rate constants have been measured in several aqueous/organic solvent mixtures for the addition reaction of Cl2˙? radicals with 2-propen-1-o1 and 2-buten-1-o1 as a function of temperature and with 2, 3-dimethyl-2-butene at room temperature. The rate constants were in the range of 106–109 L mol?1 s?1, the activation energies were relatively low (1–10 kJ mol?1), and the pre-exponential factors varied over the range log A = 7.9 to 9.4. The rate constants (k) decreased (by up to a factor of 30) upon increasing the fraction of organic solvent and log k correlated linearly with the dielectric constant for a given water/organic solvent system, but the lines for the different solvent systems had different slopes. A better correlation of log k was found with a combination of the solvatochromic factor, ET(30), and the hydrogen-bond donor acidity factor, α. This suggests that the rate of reaction is influenced by the solvent polarity and also by specific solvation of the ionic reactant and product. Solvent effect on the reaction of SO4˙? with 2-propen-1-o1 was studied for comparison. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
n-Hexyl and s-octyl radical isomerizations by intramolecular hydrogen atom shift have been studied in the presence of high methyl radical concentration where isomerized alkyl radicals reacted predominantly by combination and disproportionation reactions with methyl radicals. By assuming the rate coefficient of 1-hexyl radical recombination to be equal to that of ethyl self-combination, the rate coefficient of log(k1/s?1) = (9.5 ± 0.3) – (11.6 ± 0.3) kcal mol?1/RT ln 10 has been derived for the 6sp isomerization of n-hexyl radicals, 1-hexyl → 2-hexyl (1). Investigation of s-octyl radical isomerization was complicated by fast interconversion between 3-octyl, 2-octyl, and 4-octyl radicals. Use of the methyl trapping technique and systematic variation of methyl radical concentration made possible the determination of log(k2/s?1) = (9.4 ± 0.7) ? (11.2 ± 1.0) kcal mol?1/RT ln 10 for the 6ss isomerization of 3-octyl and the estimation of log(k3/s?1) = 10.5–17 kcal mol?1/RT ln 10 for the 5ss isomerization of 2-octyl radicals, where 3-octyl → 2-octyl (2), and 2-octyl → 4-octyl (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号