首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吡啶-BH~3相互作用复合物的理论研究   总被引:2,自引:2,他引:2  
对吡啶-BH~3复合物分别用MP2/6-31+G^*和B3LYP/6-31+G^*进行理论计算以预测该复合物的构型及解离能,得到四种构型,在MP2优化构型基础上作CCSD/6-31+G^*单点能量计算以验证MP2与B3LYP结果的可靠性,然后用B3LYP作振动频率分析,计算了各构型的垂直电离势,最后用更大基组作单点能量计算和自然键轨道(NBO)分析。结果表明,N-B直接相连的构型最稳定,其解离能为141.50kJ/mol,MP2和B3LYP对N-H接近的构型结果相关较大,另外两种构型稳定性介于二者之间,解离能分别为15.18kJ/mol,14.06kJ/mol(MP2/6-31+G^*)。  相似文献   

2.
The hydrogen-bonding ability of five-membered heteroaromatic molecules containing one chalcogen and two heteroatoms with nitrogen in addition to chalcogen, respectively, have been analyzed using density functional and molecular orbital methods through adduct formation with water. The stabilization energies for all the adducts are established at B3LYP/6-31+G* and MP2/6-31+G* levels after correcting for the basis set superposition error by using the counterpoise method and also corrected for zero-point vibrational energies. A natural bond orbital analysis at B3LYP/6-31+G* level and natural energy decomposition analysis at HF/6-31+G* using MP2/6-31+G* geometries have been carried out to understand the nature of hydrogen-bonding interaction in monohydrated heterocyclic adducts. Nucleus-independent chemical shift have been evaluated to understand the correlation between hydrogen bond formation and aromaticity.  相似文献   

3.
The 6-31G ++ basis set is described. This basis set is very similar to the existing 6-31G ** set but is somewhat smaller through the use of five (rather than six) second-order Gaussians (d functions) and has polarization function exponents optimized for correlated rather than Hartree–Fock wavefunctions. The performance of 6-31G ++ is compared with that of the 6-31G ** and 6-31G ** basis sets through calculation of the geometries and atomization energies for the set of molecules LiH, FH, H2O, NH3, CH4, N2, CO, HCN, and HCCH.  相似文献   

4.
The effect of the parent basis set on the basis set superposition error caused by bond functions is investigated systematically. An important difference between BSSE at the SCF and correlated levels is pointed out. Three new basis sets are defined, denoted 6-311 + G(d,p)B, 6-311 + G(2d,p)B, and 6-311 + G(2df,p)B. BSSE for the first-row hydrides seems to increase uniformly with increasing atomic number of the central atom. Expansion of the valence part of the basis set from 6-31G to 6-311G, as well as adding f functions, has a significant effect on the BSSE. Additional BSSEs incurred by bond functions are less than or equal to 1 kcal/mol for the 6-311 + G(2df,p)B basis set. For the dissociation energies of the first-row hydride species, agreement with experiment within only a few kcal/mol can be obtained even without resorting to isogyric reaction cycles. For high-quality calculations, adding bond functions seems to have definite advantages over expanding the polarization space beyond the [2d1f] level.  相似文献   

5.
6.
We report a comparison of theoretical and experimental proton affinities at nitrogen and oxygen sites within a series of small molecules. The calculated proton affinities are determined using the semiempirical methods AM 1, MNDO , and PM 3; the ab initio Hartree–Fock method at the following basis levels: 3-21G //3-21G , 3-21+G //3-21G , 6-31G *//6-31G *, and 6-31+G (d, p)//6-31G *; and Møller–Plesset perturbation calculations: MP 2/6-31G *//6-31G *, MP 3/6-31G *//6-31G *, MP 2/6-31G +(d, p)//6-31G *, MP 3/6-31G +(d, p)//6-31G *, and MP 4(SDTQ )/6-31G +G (d, p)//6-31G *. The semiempirical methods have more nonsystematic scatter from the experimental values, compared to even the minimal 3-21G level ab initio calculations. The thermodynamically corrected 6-31G *//6-31G * proton affinities provide acceptable results compared to experiment, and we see no significant improvement over 6-31G *//6-31G * in the proton affinities with any of the higher-level calculations. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Sets of hydrogen molecule equivalents have been developed which permit the calculation of hydrogenation of different types of carbon-carbon bonds from ab initio total energies (3-21G and 6-31G* basis sets, and, to a more limited extent, for MP2/6-31G* data) of reactants and products. The calculated enthalpies of hydrogenation are in good agreement with experiment for unstrained molecules, with average errors on the order of 2 kcal/mol. The 6-31G* equivalents allow the enthalpies for strained molecules to be calculated accurately, but the 3-21G equivalents do not. The equivalents for both basis sets have been tested by calculating the enthalpies of hydrogenation of carbon-carbon bonds in nitrogen- and oxygen-containing organic molecules, free radicals, and classical carbocations. The results are in good agreement with experiment in most cases.  相似文献   

8.
A computational study on dichalcogenide molecules (R2X2; X = O, S, Se; R = H, CH3, NH2) has been carried out employing B3LYP and MP2 levels using 6-31+G*, 6-311+G*, 6-311++G**, and PVDZ basis sets. The relative energies have been evaluated at G2MP2 also. The rotational barriers and bond dissociation energies indicate that S–S bond is stronger than Se–Se and O–O bond. NBO analysis at MP2/6-31+G* suggest the presence of partial π character between X–X bond that decreases in the order S–S > Se–Se > O–O. Fuki functions for nucleophilic and electrophilic attack fail to distinguish the reactivity of S and Se. The proton affinities of the O2H2, S2H2, Se2H2 decrease in the order Se > S > O.  相似文献   

9.
We made ab initio electronic calculations of the structure and energetics of mixed hypermetalated hydrogen oxides, Li2NaOH and LiNa2OH. There exist five equilibrium geometries for each complex. In all levels of calculation the global minimum structure for Li2NaOH has C2v symmetry and a large distance between sodium and oxygen, 4.24 Å (MP2/6-31G*). The dissociation energies to all possible products were also calculated. Li2NaOH → Na + Li2OH δH = +25.33 kcal/mol (at MP4/6-311++G**//6-31G* + ZPE scaled by 0.9). All other dissociation processes are highly endothermic. Similar procedures were applied to LiNa2OH. The global minimum structure for LiNa2OH belongs to point group Cs. It is also endothermic to all possible dissociation paths. LiNa2OH →Na + LiNaOH δH = +12.72 kcal/mol (at MP4/6-311++G*//6-31G* + ZPE scaled by 0.9). The nuclear repulsion energy is crucial in energetics of the structures. The distribution of electron density and bonding properties for these equilibrium structures were analyzed.  相似文献   

10.
Binding energies for hydrogen-bonded complexes of six cyclic ethers with five hydrogen-bond donor molecules that mimic selected amino acid side chains have been calculated at the MP2/6-31G*, MP2/6-31+G*, MP2/6-311++G**(single point), and MP2/aug-cc-pvtz levels, using geometries obtained with or without counterpoise corrections throughout the geometry optimization. The calculated basis set superposition error (BSSE) amounts to 10-20% and 5-10% of the uncorrected binding energies for the neutral and ionic species, respectively, at the MP2/aug-cc-pvtz level. The authors conclude that the O...H distances in the hydrogen bonds and binding energies for the studied systems may be determined with uncertainties of up to 0.08 A and 1-2 kcal/mol, respectively, in comparison with the MP2/aug-cc-pvtz values at a reasonable computational cost by performing standard geometry optimization at the MP2/6-31+G* level. Hydrogen-bond formation energies are more negative for cyclic ethers compared to their counterparts with a C=C double bond in the ring next to the oxygen atom. The less negative hydrogen-bonding energy and the increased O...H separation have been attributed to the reduced basicity of the ether oxygen when the lone pairs can enter conjugation with the pi-electrons of the Calpha=Cbeta double bond. The present study is the first step toward the development of an affordable computational level for estimating the binding energies of natural product, fused ring ether systems to the human estrogen receptor.  相似文献   

11.
Ab initio molecular orbital calculations are reported for complexes of hydroxide and methoxide anions with water and methanol. The basis set dependence of the results is carefully considered for HO? ? H2O. 4-31G and 6-31G* calculations yield similar geometrical predictions; however, the 6-31G* basis set is superior for computing dissociation energies. Further extension to the 6-31G** level provides little change. The dissociation energies for the complexes range from 25 to 37 kcal/mole with hydroxide ion and methanol acting as the strongest base and acid. The difference in gas phase acidities of water and methanol is halved by the introduction of one solvent molecule.  相似文献   

12.
Ab initio calculations at second-order Møller-Plesset perturbation theory with the 6-31 + G(d,p) basis set have been performed to determine the equilibrium structures and energies of a series of negative-ion hydrogen-bonded complexes with H2O, H2S, HCN, and HCl as proton donors and OH, SH, CN, and Cl as proton acceptors. The computed stabilization enthalpies of these complexes are in agreement to within the experimental error of 1 kcal mol–1 with the gas-phase hydrogen bond enthalpies, except for HOHOH, in which case the difference is 1.8 kcal mol–1. The structures of these complexes exhibit linear hydrogen bonds and directed lone pairs of electrons except for complexes with H2O as the proton donor, in which cases the hydrogen bonds deviate slightly from linearity. All of the complexes have equilibrium structures in which the hydrogen-bonded proton is nonsymmetrically bound, although the symmetric structures of HOHOH and ClHCl are only slightly less bound than the equilibrium structures. MP2/6-31 + G(d,p) hydrogen bond energies calculated at optimized MP2/B-31 + G(d,p) and at optimized HF/6-31G(d) geometries are similar. Using HF/6-31G(d) frequencies to evaluate zero-point and thermal vibrational energies does not introduce significant error into the computed hydrogen bond enthalpies of these complexes provided that the hydrogen-bonded proton is definitely nonsymmetrically bound at both Hartree-Fock and MP2.  相似文献   

13.
Ab initio HF/6-31+G*, MP2/6-31+G*, B3LYP/6-31+G* level calculations have been performed on HSe-NH2 to estimate the Se-N rotational barriers and N-inversion barriers. Two conformers have been found withsyn andanti arrangement of the NH2 hydrogens with respect to Se-H bond. The N inversion barriers in selenamide are 1.65, 2.47, 1.93 kcal/mol and the Se-N rotational barriers are 6.58, 6.56 and 6.12 kcal/mol respectively at HF/6-31+G*, MP2/6-31+G* and B3LYP/6-31+G* levels respectively. The nNΣ *Se-H negative hyperconjugation is found to be responsible for the higher rotational barriers.  相似文献   

14.
The fundamental spectrum and the parameters of the potential function of a number of saturated hydrocarbon molecules are calculated in an anharmonic approximation. The calculation is performed by the variational technique using a minimal Morse-harmonic basis. The potential function is taken as the sum of the Morse function for CH bonds and the harmonic function for the skeletal and deformation vibrations. The initial approximation for the potential function is found by ab initio calculations in a 6-31G basis and refined by solving the inverse problem. The calculated CH bond dissociation energies depend significantly on the molecular structure and on the position of CH bonds in the molecule. These energies correlate well with the experimental cleavage energies of these bonds. The changes in the dipole moment of the molecule induced by vibrations were found by ab initio calculations in a 6-31G basis. The calculated IR transmission curves are in good agreement with the experimental curves.  相似文献   

15.
On the basis of the recently proposed accurate calculation scheme of the inner-sphere reorganization energies (RE ) of the reactants in gas-phase electron-transfer xprocesses, the inner-sphere RE values for the AH + AH+ (A = Mg, Al, Si, P, S, Cl) self-exchange systems are calculated in terms of an ab initio Hartree–Fock self-consistent-field MO method at different basis-set levels (6-31G **, 6-31 +G **, DZ , and DZP ). The structural parameters involved are also determined via the perturbation theory and the Dunham expansion of the Morse function and compared with the experimental values. Dissociation energies are corrected by electron correlation at the MP 2/6-31G * level. Results of the inner-sphere REs obtained from different models via ab initio calculations for these systems discussed here are in full agreement with the corresponding experimental data. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
孙巧  步宇翔 《化学学报》2002,60(3):413-418
用密度泛函理论(BEP86, B3LYP)在6-31G~*, 6-311+G~*基组水平上和从头算方 法[MP2(FULL)/6-311+G~*]优化了NH_3和NH_3~+以及复合物(NH_3…NH_3)~*的几何 构型,计算了体系稳定化能,然后用MP2(FULL)/6-311+G”*方法扫描势有面 找出不同N-N接触距离的活化志体系的能量、活化能、耦合矩阵元,利用黄金规则 计算出不同的N-N接触距离的电子转移速率。并讨论了活化态体系的能量、活化能 、耦合矩辄元和Franck-Condon因子及电子转移速率与接触距离的依赖关系。进一 步验证了黄金规则应用于电子转移反应的正确性。  相似文献   

17.
The reactions F + H2 → HF + H, HF → H + F, F → F+ + e? and F + e? → F? were used as simple test cases to assess the additivity of basis set effects on reaction energetics computed at the MP4 level. The 6-31G and 6-311G basis sets were augmented with 1, 2, and 3 sets of polarization functions, higher angular momentum polarization functions, and diffuse functions (27 basis sets from 6-31Gd, p) to 6-31 ++ G(3df, 3pd) and likewise for the 6-311G series). For both series substantial nonadditivity was found between diffuse functions on the heavy atom and multiple polarization functions (e.g., 6-31 + G(3d, 3p) vs. 6-31 + G(d, p) and 6-31G(3d, 3p)). For the 6-311G series there is an extra nonadditivity between d functions on hydrogen and multiple polarization functions. Provided that these interactions are taken into account, the remaining basis set effects are additive to within ±0.5 kcal/mol for the reactions considered. Large basis set MP4 calculations can also be estimated to within ±0.5 kcal/mol using MP2 calculations, est. EMP4(6-31 ++ G(3df, 3pd)) ≈ EMP4(6-31G(d, p)) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31G(d, p)) or EMP4(6-31 + G(d, p) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31 + G(d, p)) and likewise for the 6-311G series.  相似文献   

18.
The structures of P2 + P2+ were studied with ab initio calculations at the ROHF and UHF levels with the 6-31G* basis set. The geometries and dissociation energies for the four selected structures–collinear, T-shaped, regular trapezoid, and elongated tetrahedral–were studied in comparison with N2 + N2+. The trade-off of the intramolecular π bond for the intermolecular σ bond for the P4+ system results in its larger dissociation energies and more substantial changes in bond distances than those in the N4+ system. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
P. Senthil Kumar 《Tetrahedron》2005,61(23):5633-5639
The potential energy surface of sulfoximines has been searched using ab initio MO and Density Functional Calculations. The electronic structures of the isomers of sulfoximine have been studied using HF/6-31+G*, MP2(full)/6-31+G* and B3LYP/6-31+G* levels. Final energies of these molecules have been calculated at the high accuracy G2 and CBS-Q levels. Though a formal SN double bond is generally considered between sulfur and nitrogen in these systems, theoretical studies do not show any π interaction between them. S-N rotational barriers, bond dissociation energies, atomic charge analysis, and NBO analysis all indicate only a single bond across S-N with a very strong ionic interaction.  相似文献   

20.
An alternative route toward developing basis sets for post-Hartree-Fock calculations, the hybrid bond polarization function method, is investigated. Two new basis sets, denoted 6-31G(d, p)+ B and 6-31 + G(d,p)+B, are defined for the first-row hydrides. The dissociation energies of the first-row hydride species in their respective ground states are computed using full fourth-order Møller-Plesset theory, and compared with results obtained with large polarized basis sets containing no bond functions. It is shown that results are competitive even with basis sets as large as 6-311++G(3df,3pd), while computation times are reduced by a factor of 4 to 20. On empirical grounds, the basis set superposition error should be neglected entirely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号