首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the monoclinic and triclinic polymorphs of zoledronic acid, C5H10N2O7P2, have been established from laboratory powder X‐ray diffraction data. The molecules in both polymorphs are described as zwitterions, namely 1‐(2‐hydroxy‐2‐phosphonato‐2‐phosphonoethyl)‐1H‐imidazol‐3‐ium. Strong intermolecular hydrogen bonds (with donor–acceptor distances of 2.60 Å or less) link the molecules into layers, parallel to the (100) plane in the monoclinic polymorph and to the (10) plane in the triclinic polymorph. The phosphonic acid groups form the inner side of each layer, while the imidazolium groups lie to the outside of the layer, protruding in opposite directions. In both polymorphs, layers related by translation along [100] interact through weak hydrogen bonds (with donor–acceptor distances greater than 2.70 Å), forming three‐dimensional layered structures. In the monoclinic polymorph, there are hydrogen‐bonded centrosymmetric dimers linked by four strong O—H...O hydrogen bonds, which are not present in the triclinic polymorph.  相似文献   

2.
First principles calculations of the phonon dispersion relations and the phonon density of states for three zero-pressure zirconia phases are presented. The phonon dispersion relations of the tetragonal and monoclinic phases do not exhibit the imaginary frequencies, contrary to the cubic phase for which the imaginary soft mode is seen. For tetragonal and monoclinic phases the free energies versus temperature are calculated in harmonic approximation. They cross at 1560 K indicating the phase transition.  相似文献   

3.
《Chemical physics》1986,101(3):429-437
Phosphorescence and optically detected magnetic resonance (ODMR) studies were performed on the perprotonated triplet traps in isotopically mixed (h4 in d4) 1,4-dichlorobenzene at 1.75 K. We find evidence for two distinct crystalline phases of the d4 host crystal which are stable in temperature ranges near room temperature, each of which induces a distinct set of ODMR parameters on the trap species being monitored. Both cw and pulsed ODMR are used to probe for evidence of trap-to-trap triplet energy transfer at several trap concentrations. We find that at low concentrations ODMR signals are strong, and the excitations are definitely localized. At concentrations above 9%, both coherent and cw ODMR signals become hard to detect. The results are discussed in terms of likely mechanisms for energy exchange among the triplet traps.  相似文献   

4.
The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point calculations is an extension of the so-called pseudo-supercritical path sampling procedure. This study demonstrates that the method can be effectively applied to quite complex systems such as ionic liquids and that the appropriate choice of tethering potentials for a key step in the thermodynamic path can enable first order phase transitions to be avoided.  相似文献   

5.
6.
Solid-state (17)O NMR spectroscopy is employed to characterize powdered samples of known monoclinic and orthorhombic modifications of (17)O-enriched triphenylphosphine oxide, Ph(3)PO. Precise data on the orientation-dependent (17)O electric field gradient (EFG) and chemical shift (CS) tensors are obtained for both polymorphs. While the (17)O nuclear quadrupolar coupling constants (C(Q)) are essentially identical for the two polymorphs (C(Q) = -4.59 +/- 0.01 MHz (orthorhombic); C(Q) = -4.57 +/- 0.01 MHz (monoclinic)), the spans (Omega) of the CS tensors are distinctly different (Omega = 135 +/- 3 ppm (orthorhombic); Omega = 155 +/- 5 ppm (monoclinic)). The oxygen CS tensor is discussed in terms of Ramsey's theory and the electronic structure of the phosphorus-oxygen bond. The NMR results favor the hemipolar sigma-bonded R(3)P(+)-O(-) end of the resonance structure continuum over the multiple bond representation. Indirect nuclear spin-spin (J) coupling between (31)P and (17)O is observed directly in (17)O magic-angle-spinning (MAS) NMR spectra as well as in (31)P MAS NMR spectra. Ab initio and density-functional theory calculations of the (17)O EFG, CS, and (1)J((31)P,(17)O) tensors have been performed with a variety of basis sets to complement the experimental data. This work describes an interesting spin system for which the CS, quadrupolar, J, and direct dipolar interactions all contribute significantly to the observed (17)O NMR spectra and demonstrates the wealth of information which is available from NMR studies of solid materials.  相似文献   

7.
8.
The electrochemistry of monoclinic and tetragonal vanadium-doped zirconias (VZrO2), prepared from gel precursors with vanadium loadings ranging from 0.5 to 15 mol%, has been studied using abrasive-conditioned graphite/polyester composite electrodes immersed in aqueous HCl and HClO4 solutions. Isolated vanadium centers form a solid solution in the zirconia lattice with a solubility limit close to 5 mol%. Above 5 mol%, finely dispersed V2O5 is formed. Vanadium centers located at the boundary sites of the zirconia lattice display successive one-electron transfer processes near to +0.25 and +0.10 V vs. SCE, whereas finely dispersed V2O5 yields three successive reduction processes at +0.46, +0.30, and +0.16 V vs. SCE. Electrochemical data indicate the presence of both V5+ and V4+ centers in the lattice of monoclinic and tetragonal zirconias, the V5+/V4+ ratio decreasing as the vanadium loading increases. Electronic Publication  相似文献   

9.
The electrostatic interaction for arbitrary symmetry (including non-simply reducible point groups), different coupling schemes, and several open shells is discussed from a common viewpoint using the particle-number representation (second quantization). The different coupling schemes simply arise from a different interpretation of the relevant symmetry group. Using the adjective CFPS of the preceding paper, the interaction within several open shells can be calculated. In the case of one-center expansions like ligand field theory the many-particle matrix elements are directly expressed by the radial Slater integrals using isoscalar factors. An example of the formalism is worked out. By the way the unitary transformations between strong and weak field coupling schemes are expressed recursively in the number of particles.  相似文献   

10.
KCrF(3) has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively. It reveals that the ground state is the A-type antiferromagnetic in both phases. Furthermore, the ground states of the two phases are found to be Mott-Hubbard insulators with the G-type orbital ordering pattern. In addition, our calculations show the staggered orbital ordering of the 3d(x(2) ) and 3d(y(2) ) orbitals for the tetragonal phase and the 3d(z(2) ) and 3d(x(2) ) orbitals for the monoclinic phase, which is in agreement with the available data. More importantly, the relationship between magnetic structure and orbital ordering as well as the origin of the orbital ordering are analyzed in detail.  相似文献   

11.
The high-temperature heat capacity of zirconia was directly measured by differential scanning calorimetry between T = (1050 and 1700) K and derived from the heat content measured by transposed temperature drop calorimetry between T = (970 and 1770) K, including the monoclinic–tetragonal (m–t) phase transition region. The enthalpy and entropy of the m–t phase transition are (5.43 ± 0.31) kJ · mol−1 and (3.69 ± 0.21) J · K−1 · mol−1, respectively. Values of thermodynamic functions are provided from room temperature to 2000 K.  相似文献   

12.
The energetics, structure and physical properties of tetragonal and orthorhombic SiS2 were calculated by periodic density functional theory (DFT) calculations, using both localized orbital and projected augmented wave basis-sets. All methods applied agree upon the relative energies of the different polymorphs but show differences in the predicted geometries, which are minimized upon improving the basis-set quality. The hybrid PBE0 functional was found to give the best match between experimental and calculated structures. When comparing SiS2 with its much better studied oxide analog silica, we observe that upon substituting sulphur for oxygen, the energy landscape changes dramatically. Other effects of changing S for O are found to be smaller Si-X-Si angles, a broader distribution of X-Si-X angles, a more flexible framework and a significantly reduced band gap. The latter is in line with the experimental observation of photoluminescence in related GaGeS2 compounds and suggests that SiS2 might find application in UV light emitting diodes. Finally, a comparison of the maximally localized Wannier functions demonstrates that the Si-S bonds in SiS2 have a considerably more covalent character than the Si-O bonds in silica.  相似文献   

13.
14.
The fractional parentage coefficients (CFPS ) for arbitrary symmetry (including non-simply reducible point groups), different coupling schemes, and several open shells are discussed with emphasis on the common features. The differences between the coupling schemes arise merely from a different interpretation of the relevant symmetry group. The formulation uses the particle-number representation (so-called second quantization), in which the CFPS appear as the reduced matrix elements of the creation or annihilation operators. This shows, that there is no principal difference in the fractional parentage scheme of one or several open shells. For the latter case the theory of adjective CFPS is worked out and applied to an example of octahedral symmetry.  相似文献   

15.
E. Rytter 《Chemical physics》1976,12(4):355-365
A table listing subgroups and supergroups of 43 chemically important symmetry point groups is presented. Other tables give the site groups and the corresponding interchange groups for those point groups which are of finite order. It is shown how the tables may be used to facilitate the structure determination of metal-ligand and related compounds from spectroscopic data and how the construction of symmetry adapted linear combinations. SALCs, may be simplified. The tables also may be used in factor group analysis.  相似文献   

16.
Infrared and Raman spectra of the three forms of metaboric acid (orthorhombic, monoclinic and cubic) are presented and discussed. The behaviour of the asymmetric stretching vibration voh and of the in-plane and out-of-plane deformations δOH and γOH shows that hydrogen bonds of different “strengths” are present in the three forms of metaboric acid, in accordance with X-ray diffraction measurements. This phenomenon is explained in a qualitative way by a valence bond treatment of the structural centres present in the three forms of metaboric acid. The remaining vibrational modes are related to the analogous modes present in borates and polyborates of known structure.  相似文献   

17.
Pure monoclinic (m) and tetragonal (t) zirconia nanoparticles were readily synthesized from the reaction of inorganic zirconium salts (e.g., hydrated zirconyl nitrate) and urea in water and methanol, respectively, via a facile solvothermal method. The role of the solvents was crucial in the formation of the pure ZrO(2) phases, whereas their purity was essentially insensitive to other variables, including reaction temperature, reactant concentration, pH, and zirconium salts. Water as the solvent led to the transformation of hydrous ZrO(2) precipitates initially formed with tetragonal structures to thermodynamically more stable m-ZrO(2) via the dissolution-precipitation process, whereas methanol favored the removal of water molecules from the precursors via their reaction with urea, consequently maintaining the tetragonal structures. The obtained tetragonal samples were found to possess superior hydrothermal stability compared to those reported previously, which provides the possibility for systematically studying the effects of ZrO(2) phases on many catalytic reactions involving water as a reactant or product. Using these pure m- and t-ZrO(2) phases as supports, dispersed MoO(x) catalysts were synthesized at MoO(x) surface densities of approximately 5.0 Mo/nm(2), which is close to one monolayer of coverage. Characterization by X-ray diffraction and Raman spectroscopy confirmed that the pure ZrO(2) phases remained unchanged in the presence of the MoO(x) domains and the MoO(x) domains existed preferentially as 2D polymolybdate structures. The catalysts were subsequently examined for selective methanol oxidation as a test reaction. m-ZrO(2) support led to 2-fold greater oxidation rates than for t-ZrO(2) support, reflecting the higher intrinsic reactivity of the MoO(x) domains on m-ZrO(2). This is consistent with their higher reducibility probed by temperature-programmed reduction with H(2) (H(2) TPR). These observed effects of the ZrO(2) phases provide the basis for designing catalysts with tunable redox properties and reactivity.  相似文献   

18.
In this study, synthesis and characterization of two polymorphs of a new nano-sized zirconium(IV) complex, [ZrO(dmph)I2] (1), {dmph = 2,9-dimethyl-1,10-phenanthroline (neocuproine)}, have been investigated in two different solvents. The reaction between zirconyl nitrate pentahydrate and potassium iodide with dmph as a ligand under ultrasonic irradiation in methanol and mono-ethylene glycol (MEG) leads to the formation of the nano-sized Zr(IV) complex. Characterization of the Zr(IV) complex has been performed using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The thermal stability of the compound 1 has been studied by thermal gravimetric and differential thermal analyses. Particle sizes of the compound 1 have been decreased after thermal treatments in an autoclave. Pure monoclinic (m) and tetragonal (t) zirconia (ZrO2) nanoparticles were readily synthesized from thermal decomposition of the Zr(IV) complex as a new precursor in presence of methanol and MEG as solvents, respectively. Zirconium oxide was characterized by FT-IR, XRD, and SEM to depict the phase and morphology. The results showed that, pure zirconia was produced with particle size about 59 nm and crystal system was monoclinic when methanol was used as a solvent during complexation process. On the other hand, particle sizes of zirconia with tetragonal structure were significantly reduced to about 39 nm, when MEG was used as solvent.  相似文献   

19.
, and representations of the orbits of molecular symmetry groups are tabulated and their mathematical properties discussed. Applications are made to the theory of molecular vibrations, electronic structures of complexes and the tensor surface harmonic theory of bonding in clusters. Attention is drawn to the unified manner in which all these analyses can be carried out using the spherical shell technique.  相似文献   

20.
Two series of rare-earth-metal (R) compounds, R(7)Au(2)Te(2) (R = Tb, Dy, Ho) and R(6)AuTe(2) (R = Sc, Y, Dy, Ho, Lu), have been synthesized by high-temperature techniques and characterized by X-ray diffraction analyses as monoclinic Er(7)Au(2)Te(2)-type and orthorhombic Sc(6)PdTe(2)-type structures, respectively. Single-crystal diffraction results are reported for Ho(7)Au(2)Te(2), Lu(6)AuTe(2), Sc(6)Au(0.856(2))Te(2), and Sc(6)Au(0.892(3))Te(2). The structure of Ho(7)Au(2)Te(2) consists of columns of Au-centered tricapped trigonal prisms (TCTPs) of Ho condensed into 2D zigzag sheets that are interbridged by Te and additional Ho to form the 3D network. The structure of Lu(6)AuTe(2) is built of pairs of Au-centered Lu TCTP chains condensed with double Lu octahedra in chains into 2D zigzag sheets that are separated by Te atoms. Tight binding-linear muffin-tin orbital-atomic sphere approximation electronic structure calculations on Lu(6)AuTe(2) indicate a metallic property. The principal polar Lu-Au and Lu-Te interactions constitute 75% of the total Hamilton populations, in contrast to the small values for Lu-Lu bonding even though these comprise the majority of the atoms. A comparison of the theoretical results for Lu(6)AuTe(2) with those for isotypic Lu(6)AgTe(2) and Lu(6)CuTe(2) provides clear evidence of the greater relativistic effects in the bonding of Au. The parallels and noteworthy contrasts between Ho(7)Au(2)Te(2) (35 valence electrons) and the isotypic but much electron-richer Nb(7)P(4) (55 valence electrons) are analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号