首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A zeolite catalyzed, single step and environmentally friendly process for synthesis of classical Biginelli reaction was investigated. For this reaction Transition metal/Y zeolites were prepared by microwave solid-state and aqueous solution ion-exchange methods. The yield of reactions was increased in order of CuY > CoY > NiY > MnY ≈ FeY > VY > CrY > ZnY for the solid-state zeolite ion-exchange and CuY > CoY > NiY > MnY > CrY > VY > ZnY > FeY for the aqueous solution ion-exchange. The solid-state ion-exchange zeolite by microwave irradiation showed higher activity compared to the aqueous solution exchange. The yield of the product in the present of CuY zeolite was in order of 22–50%.  相似文献   

2.
The reducibility of several nickel on silica systems prepared by incipient wetness impregnation and precipitation-deposition has been studied using TPR and TG. The analysis of the results has allowed us to determine the minimum drying and reduction temperatures for both impregnation and precipitation catalysts. From an analysis of the obtained results, together with X-ray diffraction and the study of the reduction degree, dispersion and nickel particle size of catalysts activated at different reduction temperatures, conclusions on the nickel surface chemical distribution have been derived. An optimal reduction temperature for the catalysts has been determined from activity considerations in the hydrogenation of sunflower seed oil.  相似文献   

3.
Guo  Fang  Li  Jun  Li  Wanxi  Chen  Xiuling  Qi  Hongxue  Wang  Xiaoxiao  Yu  Yue 《Russian Journal of Applied Chemistry》2017,90(12):2055-2063

Al-MCM-41 materials were prepared with different Al contents and used as supports for NiW catalysts. The supports and catalysts were characterized by XRD, N2 adsorption-desorption, XPS, Raman, H2-TPR techniques. The XPS result showed that the Al added to MCM-41 promoted the dispersion of W and Ni species. The Raman result showed that the Al added to MCM-41 favored the formation of the suitable W species. The H2-TPR result showed that the Al added to MCM-41 can reduce the reduction temperature of W species on the catalysts. The hydrodenitrogenation (HDN) results showed that the HDN activity followed the order of NiW/Al-2 > NiW/Al-1 > NiW/Al-4 > NiW. Moreover, this tendency was also valid for the ratio of propylcyclohexane/propylbenzene (PCH/PB). The high HDN activity and PCH/PB ratio of NiW/Al-2 are due to the well dispersion of the W and Ni species, the suitable W species and the low reduction temperature of W species.

  相似文献   

4.
Studies on Nickel Oxide Mixed Catalysts. XVI. Reduction Behaviour of Amorphous NiO? Al2O3/SiO2 Catalysts The reduction behaviour of NiO? Al2O3/SiO2 catalysts prepared by precipitationdeposition is influenced by the phase composition (amorphous nickel layersilicates and nickel alumino layersilicates, nickel spinels, nickel oxide) and the differences of the composition between surface and bulk. TPR measurements, determinations of the reduction degree, and the nickel particle sizes by static magnetic measurements showed that the reducibility of the NiO? Al2O3/SiO2 catalysts is enhanced and the nickel dispersity is decreased at low Al2O3 contents. The decrease of the reducibility at Al2O3 contents >5 mole% is caused by the formation of nickel spinels and the decrease of the NiII ion surface concentration.  相似文献   

5.
制备了一系列铜质量分数不同的CuNi/γ-Al2O3催化剂,进行了TPR和XRD表征并测定了该系列催化剂对苯加氢制环己烷的催化活性。结果表明,助剂Cu的负载量对低温(160 ℃)还原后催化剂的催化活性影响很大,在铜镍原子摩尔比为1∶1时,催化剂具有较高的催化活性和稳定性;添加铜组分可促进镍在载体表面分散,使负载NiO的还原温度降低,催化活性提高。  相似文献   

6.
使用共沉淀法制备了担载量很高的Ni/Al2O3催化剂,通过正丁醇干燥处理,提高了催化剂的表面积和担载镍的分散度.实验发现,镍的担载量和干燥过程刘催化剂的表面积、孔结构及金属镍的还原度和分散度影响很大.经过正丁醇处理的80%Ni/Al2O3-B催化剂具有较高的表面积,而担载镍的还原度和分散度也显著提高,使得催化剂具有很高...  相似文献   

7.
Liquid phase hydrogenolysis of ethyl lactate to 1,2‐propanediol was performed over silica supporting cobalt catalysts prepared by two different methods: precipitation‐gel (PG) technique and deposition‐precipitation (DP) procedure. The cobalt species (Co3O4/cobalt phyllosilicate) present in the corresponding calcined PG and DP catalysts were different as a consequence of the preparation methods, and Co OH Co olation and Si O Co oxolation molecular mechanisms were employed to elucidate the chemical phenomena during the different preparation procedures. In addition, the texture (BET), reduction behavior (TPR and in‐situ XRD), surface dispersion and state of cobalt species (XPS), and catalytic performance differ greatly between the samples. Because of small particle size, high dispersion of cobalt species and facile reducibility, the Co/SiO2 catalyst prepared by precipitation‐gel method presented a much higher activity than the catalyst prepared by deposition‐precipitation method. Metallic cobalt is assumed to be the catalytically active site for the hydrogenolysis reaction according to the catalytic results of both cobalt samples reduced at different temperatures and the structure changes after reaction.  相似文献   

8.
《Comptes Rendus Chimie》2015,18(3):277-282
Ni7.5/NaY catalysts were prepared using two different methods, the incipient wetness impregnation method and the “two-solvent” method. These catalysts were characterised by N2 sorption, XRD, TEM and TPR. Their activity and stability in the dry reforming of methane were tested at atmospheric pressure under an equimolar mixture of methane and carbon dioxide. Three different Ni species, very small, spherical, and layers of nickel silicate were observed by TEM. The preparation by the two-solvent method led to a better dispersion of the active phase as well as to better activity and stability. These catalysts were promoted with small amounts (0.1 wt%) of rhodium. Rhodium facilitates the reducibility and greatly enhances catalytic activity. A complete conversion (100%) for CH4 and CO2 over the Rh promoted catalyst is achieved at 584 °C and 559 °C respectively, while for the non-promoted Ni7.5/NaY catalyst, only a 60% conversion rate for CH4 and CO2 is reached at the same temperatures.  相似文献   

9.
The reaction of chloroethyltrimethylsilylether with 1-methylimidazole furnishes an ionic liquid that undergoes methanolysis to crystalline 2-hydroxyethylimidazolium chloride (crystal structure presented). Conversion to defined hydroxyethylimidazol-2-ylidene nickel complexes failed, but was accomplished with 1-methyl-3-acetophenyl-imidazolium bromide. The bis(NHCO) nickel(II) chelate is formed, rather than a methallylnickel monochelate, but with nickelocene a monochelate NiCp complex was detected. The bulky 1-(2,6-diisopropylphenyl)-3-(2’-phenyl-enolato)-imidazol-2-ylidene allylpalladium chloride was obtained in pure form. Attempts to generate catalysts for ethylene oligomerization by in situ techniques have failed so far whereas PO ligands, comparable by the P-C diagonal relationship, provide active catalysts.   相似文献   

10.
Hydrogen was produced by Aqueous Phase Reforming (APR) of 10% (w/w) sorbitol using mono- and bi-metallic catalysts of Ni and Pt supported on alumina nano-fibre (Alnf), mesoporous ZrO2 and mixed oxides of ceria–zirconia–silica (CZxS) with varying concentration of silica (where x is silica concentration). X-ray diffraction, TEM/EDS and temperature programmed reduction were also carried on these catalysts to study the surface properties. It was observed that co-impregnation of Pt and Ni in atomic ratio 1:12 increased the reducibility of Ni by forming an alloy. However, sequential impregnation of Ni followed by Pt does not form the bi-metallic particles to increase the Ni reducibility. Reduction peak of co-impregnated Ni–Pt/Alnf was found to be 270 °C lower than the sequentially impregnated Pt/Ni/Alnf. The presence of silica at high concentration in CZxS support decreased the reducibility of ceria by forming an amorphous layer on CexZr1?xO2 crystals, which also decreased Ni reducibility. The rate of H2 formation from aqueous phase sorbitol reforming was found to be highest for co-impregnated Ni–Pt catalysts followed by sequentially impregnated Pt/Ni and monometallic Ni catalyst. The H2 activity decreased in the following order of the supports: Alnf > ZrO2 > CZ3S > CZ7S.  相似文献   

11.
A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N2 physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH3)3 species even after calcinations and H2 reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH3)3 for the re-adsorption of α-olefins.  相似文献   

12.
A series of novel Ni/CeO2-Al2O3composite catalysts were synthesized by one-step citric acid complex method. The as-synthesized catalysts were characterized by N2physical adsorption/desorption, X-ray diffraction(XRD), Fourier transform infrared(FT-IR) spectroscopy, hydrogen temperature-programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS) and thermogravimetry analysis(TGA). The effects of nickel content, calcination and reaction temperatures, gas hourly space velocity(GHSV) and inert gas dilution of N2on their performance of catalytic partial oxidation of methane(CPOM) were investigated. Catalytic activity test results show that the highest methane conversion(85%), the best selectivities to carbon monoxide(87%) and to hydrogen(95%), the excellent stability and perfect H2/CO ratio(2.0) can be obtained over Ni/CeO2-Al2O3with 8 wt% Ni content calcined at 700 ℃ under the reaction condition of 750 ℃, CH4/O2ratio of 2 : 1 and gas hourly space velocity of 12000 mL h-1 g-1. Characterization results show that the good catalytic performance of this composite catalyst can be contributed to its large specific surface area(~108 m2 g-1), small crystallite size, easy reducibility and low coking rate.  相似文献   

13.
Summary Zn-promoted Cu-ZSM-5 catalysts are active and selective for CO oxidation in the presence of H2. This high activity was attributed to the improved reducibility of copper species in exchanged samples.</o:p>  相似文献   

14.
采用浸渍法制备了一系列钨负载量不同的W/SiO2/Al2O3 催化剂. 采用X 射线衍射(XRD)、激光拉曼(Raman)光谱、紫外-可见(UV-Vis)光谱、氢气程序升温还原(H2-TPR)和氨程序升温脱附(NH3-TPD)等技术对催化剂进行了表征. 实验结果表明: 钨的负载量对催化剂上氧化钨物种的分散程度、还原性以及催化剂的酸性有非常重要的影响. 对该类催化剂上1-丁烯自歧化反应进行了详细考察, 结果表明: 当钨的质量分数为6.0%时,W/SiO2/Al2O3催化剂表现出最佳的歧化活性和稳定性. 原因在于6.0%的钨负载量可以使催化剂上氧化钨物种具有中等程度的分散性、合适的还原性, 并且使催化剂具有一定程度的酸性, 这些因素有利于在催化剂上形成烯烃歧化活性位.  相似文献   

15.
The catalytic properties of ZnAlVO mixed oxides derived from decavanadate-exchanged ZnAl–layered double hydroxide (LDH) precursors prepared by a sol–gel method (ZnAlVO–LDHx,y) were investigated in the oxidative dehydrogenation of propane and compared with those of supported catalysts obtained by conventional impregnation of NH4VO3 on ZnO (ZnVO-I,y) and ZnAlO mixed oxide (ZnAlVO-I,y) supports. The effects of composition and calcination time on the catalytic behavior were particularly examined. Higher propane conversions were achieved at higher vanadium content and calcination time of the precursors. The LDH-derived catalysts were the most active ones in all the temperature range studied (300–425 °C). The order of activity for propane conversion for the different catalyst families varies as ZnAlVO–LDHx,y > ZnAlVO-I > ZnVO-I and follows the strength of the Lewis and Brønsted acid sites determined by monitoring of pyridine adsorption by Fourier transform infrared spectroscopy, whereas the propene selectivities are close together in agreement with the similar densities of basic sites determined by CO2–temperature-programmed desorption measurements. It was indeed established that the acidity, rather than the nature of the crystalline phases, the reducibility, or the specific surface area of the samples, governs the catalytic activity.  相似文献   

16.
Recent progress on support modification of supported nickel catalysts for hydrogen production by auto-thermal reforming of ethanol was reported in this review. Nickel catalysts supported on various materials, including metal oxides and metal oxide-stabilized mesoporous zirconias, were prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. Various experimental measurements such as NH3-TPD (temperature-programmed desorption) and TPR (temperature-programmed reduction) were carried out to elucidate the different catalytic performance of supported nickel catalysts. It was revealed that acid property of supporting materials served as one of the important factors determining the catalytic performance. Hydrogen yield over nickel catalysts supported on metal oxides showed a volcano-shaped curve with respect to acidity of the supports. Among the catalysts tested, Ni/ZrO2 catalyst with an intermediate acidity exhibited a superior catalytic performance. It was also observed that reducibility of nickel catalysts supported on metal oxide-stabilized mesoporous zirconias played a key role in determining the catalytic performance in the auto-thermal reforming of ethanol for hydrogen production. Hydrogen yield over nickel catalysts supported on metal oxide-stabilized zirconias increased with increasing reducibility of the catalysts (with decreasing TPR peak temperature of the catalysts).  相似文献   

17.
Ni/Sup catalysts were prepared, where SBA-15, γ-Al2O3, SiO2 were used as supports (Sup). The synthesized catalysts were investigated by the methods of low-temperature nitrogen adsorption, temperatureprogrammed reduction (TPR), and high-resolution transmission electron microscopy. The catalytic properties of the prepared catalysts were tested in liquid phase hydrogenation of biphenyl under conditions of a flow installation at temperatures of 60–100°C, pressure of 4 MPa, volumetric feed rate of 4–10 h–1 and H2: feed ratio of 1500 nM.. A 1 wt % solution of biphenyl in heptane,, as a model mixture, was used. It has been established that the activity of nickel hydrogenation catalysts depends on the nickel content and the type of support. The activity of supported nickel catalysts decreases in the series Ni-12/SBA-15 > Ni-12/SiO2 >> Ni-12/Al2O3. The kinetic characteristics of the biphenyl hydrogenation reaction were determined: the rate constants and activation energy for the hydrogenation of the first and second aromatic rings of the substrate molecule.  相似文献   

18.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

19.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

20.
The P,O‐chelated shell higher olefin process (SHOP) type nickel complexes are practical homogeneous catalysts for the industrial preparation of linear low‐carbon α‐olefins from ethylene. We describes that a facile synthetic route enables the modulation of steric hindrance and electronic nature of SHOP‐type nickel complexes. A series of sterically bulky SHOP‐type nickel complexes with variable electronic nature, {[4‐R‐C6H4C(O) = C‐PArPh]NiPh (PPh3); Ar = 2‐[2′,6′‐(OMe)2C6H3]C6H4; R = H ( Ni1 ); R = OMe ( Ni2 ); R = CF3 ( Ni3 )}, were prepared and used as single component catalysts toward ethylene polymerization without using any phosphine scavenger. These nickel catalysts exhibit high thermal stability during ethylene polymerization and result in highly crystalline linear α‐olefinic solid polymer. The catalytic performance of the SHOP‐type nickel complexes was significantly improved by introducing a bulky ortho‐biphenyl group on the phosphorous atom or an electron‐withdrawing trifluoromethyl on the backbone of the ligand, indicating steric and electronic effects play critical roles in SHOP‐type nickel complexes catalyzed ethylene polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号