首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of powdered Nylon 612 to bind methyl orange, ethyl orange, propyl orange, and butyl orange was investigated at 5, 15, 25 and 35°C in an aqueous solution. The amount of binding of the dye is much higher with this polyamide than with powdered Nylon 66 reported previously,1 although the former polymer has fewer amide end groups. The Van't Hoff plots of the first binding constant for the binding of butyl orange and propyl orange by powdered Nylon 612 exhibit a bell-shaped curve, whereas the plots for methyl orange and ethyl orange do not. Maximal binding occurs at approximately 15°C for propyl orange and at about 25°C for butyl orange. This is the first instance where the peculiar temperature dependence of the binding constant has been found in the binding of propyl orange, whose hydrophobicity is less than that of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic domains in powdered Nylon 612 and enhanced hydrophobic contributions in the binding process.  相似文献   

2.
2-Diethylaminoethyl methacrylate (DEAEMA)–N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been synthesized. The resultant copolymers were examined for their ability to bind methyl orange and its homologs, in particular butyl orange, at 5, 15, 25, and 35°C in aqueous solutions. The amount of binding of butyl orange is much higher with the copolymers than with polyvinylpyrrolidone or with 2-hydroxyethyl methacrylate–N-vinyl-2-pyrrolidone copolymers. Introduction of only 3% of the hydrophobic DEAEMA residue increases markedly the binding affinity toward the cosolute. Maximal binding is obtained at 15°C in the temperature range measured. This peculiar temperature dependence of the extent of binding is explicable on the basis of hydrophobic effects involved in this binding. The peculiar temperature dependence disappeared in aqueous solution of NaSCN which acts as a water-structure breaker: the extent of binding changes regularly with temperature. This is interpretable only in terms of reduction of hydrophobic contribution to the binding. With propyl orange, which is a less hydrophobic cosolute than butyl orange, the peculiarity of the binding was not detected.  相似文献   

3.
Polyvinylpyrrolidones of various degrees of cross-linkage have been prepared by radical polymerization of N-vinylpyrrolidone with methylenebisacrylamide to regulate the fraction of cross-linkage. The insoluble polymers obtained were examined for their ability to bind methyl orange and its homologs, methyl orange, ethyl orange, propyl orange, and butyl orange at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were calculated. For any particular dye the extent of binding, the absolute magnitude of ΔF°, and the value of ΔS° increased as the degree of cross-linkage increased, starting with water-soluble polyvinylpyrrolidone (zero cross-linkage) and proceeding to the polymer with high cross-linking density. This behavior can be accounted for in terms of more extensive hydrophobic domains in the cross-linked polymeric matrix that enhances hydrophobic interactions in the binding process. Moreover, the cross-linked macromolecule polymerized in the presence of methyl orange and then stripped of the bound methyl orange shows substantially stronger binding for this small molecule than the polymer cross-linked in the absence of methyl orange. In contrast, the cross-linked polymer prepared similarly in the presence of the larger molecule, butyl orange, exhibits decreased affinity toward the smaller consolute, methyl orange, than either of the other polymers described. It seems, therefore, that the polymeric matrix provides favorable binding sites or pockets that can accommodate a specific small molecule. The preparative procedure, which uses a small-molecule template, molds into the polymer some structural specificity in the binding of small molecules.  相似文献   

4.
The extent of binding of methvI orange, ethyl orange, propyl orange, and butyl orange by crosslinked polyvinylpyrrolidone was measured in all aqueous Solution. The first binding constants and the thermodynamic parameters accompanying the binding were evaluated. These values were compared with those of water-soluble polyvinylpyrrolidone. The first binding constant, the absolute magnitude of ΔF°, and the value of ΔS° of the crosslinked polyvinylpyrrolidone are substantially larger than those of the water-soluble product for any particular dye. These behaviors can be accounted for in terms of increased hydrophobic domains in the former and enhanced hydrophobic contribution in the binding process. Also the binding of the dye by the crosslinked polymer in a nonaqueous solvent, ethylene glycol, was measured to assess the contribution of hydrophobic interaction to the dye-polymer complex formation in aqueous medium. It was found that the binding of butyl orange by the crosslinked polymer is suppressed in ethylene glycol and the contribution of entropy term to the free energy change in the aqueous environment is large compared with that in ethylene glycol. The significance of the hydrophobic of the hydrophobic interaction in the dye-polymer association process is described.  相似文献   

5.
Several copolymers of 2-hydroxyethyl methacrylate (HEMA) with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA), and methyl methacrylate (MMA) were prepared at 70°C in nitrogen atmosphere using 0.2% (w/v) benzoyl peroxide as initiator. The copolymer composition was evaluated by estimation of hydroxyl group in the copolymers. Intrinsic viscosity of HEMA–EA, HEMA–BA, and HEMA–MMA copolymers was determined at 35°C in dimethyl formamide. Molecular weight distribution of copolymer samples was evaluated by gel permeation chromatography. Thermal behavior of the copolymers was investigated by dynamic thermogravimetry. Thermal stability decreased on increasing HEMA content in MA, EA, and BA copolymers. However, a reverse trend was observed in HEMA–MMA copolymers.  相似文献   

6.
The binding of methyl orange, ethyl orange, propyl orange, and butyl orange by poly(vinylpyrrolidone) has been examined by a technique of equilibrium dialysis over a high temperature range (60–90°C). The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. The results obtained at these temperatures were compared to those at lower ones (5–35°C) described previously in order to estimate the contribution of hydrophobic bonds to the binding. It was found that at the 60–90°C range complex formation between the dye and the macromolecule is associated with an exothermic enthalpy change and a positive entropy change. The enthalpy and entropy changes of the binding are of the order of ?4.5 kcal/mole and 6 eu, respectively, for each dye measured. Thus the binding is mainly enthalpy-controlled. Furthermore the effect of the alkyl chain length of the dye on both the ΔH° and ΔS° values is not pronounced. Also temperature dependences of the ΔH° and ΔS° terms were not observed. All these observations in the higher temperature range can be explained as a result of the disruption of water structure in the binding environment and hence a decrease in hydrophobic bond formation between the dye and the polymer.  相似文献   

7.
The binding of methyl orange, ethyl orange, and propyl orange by polycations involving various apolar pendant groups such as methyl, ethyl, benzyl, or dodecylbenzyl groups has been examined quantitatively by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. The favorable free energy of the binding is accompanied by an entropy gain and an exothermic enthalpy change. The shorter the alkyl chain of the dyes or the polymers, the more negative is the enthalpy change and hence the smaller is the entropy change. Furthermore, an increase in binding affinity can be created in the polycation upon introduction of hydrophobic groups. In particular, the binding ability of the polycation containing a dodecylbenzyl group for methyl orange is almost 300-fold that of bovine serum albumin. Therefore it is clear that hydrophobic interactions, as well as electrostatic ones, are involved in the binding.  相似文献   

8.
Polyethylenimine (PEI) was crosslinked with dichloroethane, glyoxal, or glutaraldehyde and polymers of various degrees of crosslinkage were made. The insoluble polymers obtained were examined for their ability to bind methyl orange and its homologs, methyl, ethyl, propyl, and butyl orange at 5, 15, 25, and 35°C, respectively, in an aqueous solution. PEI crosslinked with glutaraldehyde showed markedly increased binding affinity toward these cosolutes compared with the polymers crosslinked with dichloroethane or glyoxal. The extent of the binding increased with an increase in the degree of crosslinkage. These results suggest that the enhancement of the binding by the crosslinking is due mainly to a dual effect, introduction of hydrophobic moieties and proximity of neighboring polymer chains. The first binding constants and the thermodynamic parameters that accompanied the binding were calculated. The thermodynamic data show that the binding process is athermal and is stabilized entirely by the entropy term. Water-soluble PEI exhibited stronger cooperative interactions than the crosslinked polymer because the mobilities of the chains of the former are greater than those of the latter.  相似文献   

9.
The interaction of polyvinylpyrrolidone with methyl orange, ethyl orange, propyl orange, and butyl orange has been studied by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. It was found that the free energy and the enthalpy changes are all negative and the entropy change is largely positive. The longer the alkyl chain of the dyes, the more positive is the enthalpy change (though it is always in the negative direction) and hence the larger is the entropy change. The favorable free energy of the binding of butyl orange observed for the formation of the dye–polymer complex seems to be a result of a favorable entropy change rather than any favorable enthalpy change. Temperature dependences of the thermodynamic functions were apparently observed. That is, ΔF and ΔH become larger in absolute magnitude as the temperature increases. The positive quantity of ΔS tends to decrease with increasing temperture. All these facts obtained can be interpreted satisfactorily by the hydrophobic interaction between hydrocarbon portions of the dyes and nonpolar parts of the macromolecule.  相似文献   

10.
Hexamethylenetetramine (HMT) has been examined for its effect on the binding of methyl orange homologs, methyl orange, ethyl orange, propyl orange, and butyl orange by polyvinylpyrrolidone (PVP). In the presence of HMT the entropy changes associated with the binding tend to become more positive and the absolute magnitude in the enthalpy changes becomes smaller compared with those in the absence of HMT. These tendencies are accounted for in terms of the water-structure-promoting effect of HMT, hence the enhancement of hydrophobic interactions in the binding. PVP undergoes changes in conformation on the addition of HMT and its conformation becomes more compact. This also increases the contribution of the hydrophobic interactions to the macromolecule-small molecule interaction. Some other effects exerted by the added HMT on the binding system are also described.  相似文献   

11.
Polyion complexes of sodium poly(methacrylate) and piperidinium cationic polymers [I], which are insoluble in water and have an equal number of positive and negative charges, bind organic anions (methyl orange, ethyl orange, propyl orange, butyl orange, and pentyl orange) in aqueous solution. The strength of the binding is enhanced by an increase in the hydrophobicity of the polyion complex and the small cosolute. Moreover, strong cooperative interactions appear with increased uptake of the small molecule. Urea and an inorganic electrolyte (KCl) were examined for their effect on the binding, the amount of which is strongly suppressed by these additives. The significance of hydrophobic and electrostatic interactions which accompany the binding is described.  相似文献   

12.
用平衡渗析法研究了主链含疏水基、侧链含亲水基的接枝共聚物P-M-St和二氰二胺同甲醛、氧化铵的缩合物D-F与甲基橙MO及乙基橙EO,橙黄ⅣO-Ⅳ相互作用的热力学.由Klotz方程求得键合常数K1和△G、△H和△S.D-F与P-M-St相比,其与MO的键合作用较弱.P-M-St与染料的键合程度:O-Ⅳ>EO>MO.脲或甲醇能削弱高聚物与染料的相互作用.  相似文献   

13.
A study was made of the formation of polyion complexes between a piperidinium cationic polymer and polyanions and of the binding of azo-dye anions (methyl, ethyl, propyl, and butyl orange) by these complexes. Sodium poly(acrylate), poly(styrenesulfonate), dextran sulfate, and carboxy-methylcellulose were used as polyanions. The resultant polyion complexes (insoluble in aqueous solutions) were compared for their ability to bind the small organic molecules in aqueous solutions, for example, of urea and an inorganic electrolyte (KCI), and exhibited a strong binding affinity toward these small anions. Polyion complexes that consisted of sodium poly(acrylate), dextran sulfate, and carboxymethylcellulose as polyanions cooperated in the binding, whereas the polyion complex of sodium poly(styrenesulfonate) did not. It was suggested that small organic anions interact with the polyion complexes primarily through electrostatic and hydrophobic forces.  相似文献   

14.
The extent of binding of 1-amino-4-alkylaminoanthraquinone-2-sulfonates (alkyl?methyl, ethyl, propyl, and butyl), which have different chemical structures from methyl orange derivatives, by polyion complexes consisting of a piperidinium cationic polymer and various polyanions such as sodium poly acrylate, poly methacrylate, poly styrenesulfonate, carboxymethylcellulose, and dextran sulfate, was measured in an aqueous solution. The effect of alkyl group of the anthraquinone dye on the binding behavior was investigated. Also, the resultant binding characteristics were compared with those previously observed with methyl orange and its homologs. These polyion complexes exhibited very strong binding affinity toward the anthraquinone dye. The polyion complex of the polycation and sodium poly styrenesulfonate bound the dye noncooperatively and the binding process was athermal. The first binding constant accompanying the binding is of the order of 105–106. In contrast, the polyion complexes composed of the polycation and the other polyanions exhibited strong cooperative binding and the binding process was exothermic. The possible mode of binding is discussed.  相似文献   

15.
The hydrophobic interaction of amphiphilic copolymers, which contain 2-hydroxyethyl methacrylate(HEMA) and 1vinyl-2-pyrrolidone (VPy), with Methyl Orange (MO) was compared with that of HEMA-acrylamide (AAm) copolymers to deduce the correlation between their complexation ability in a photochromic azo dye and the photoviscosity effect in aqueous copolymer/dye complex solution. On the basis of the dialysis data and fluorometric analysis it appeared that the complexation dependence on HEMA content in the copolymers was due to the hydrophobic interaction between the polymer and the dye. For a comparable HEMA content AAm copolymers bound less MO than VPy copolymers. It was confiied by photoviscosity measurements that the conformation of the complex composed of photochromic azo dye and HEMA copolymer changed reversibly in response to the photo- and thermal isomerization of the dye. In HEMA-AAm copolymer systems the photoviscosity effect was small compared with that of HEMA-VPy copolymer systems. From these results it was concluded that the complexation ability of polymers due to the hydrophobic interaction was an important factor in producing a large photoinduced conformational change in water.  相似文献   

16.
The extent of binding of methyl orange, ethyl orange, propyl orange, and butyl orange by poly(vinylpyrrolidone) has been measured in aqueous solutions of inorganic electrolytes such as NaCl, LiCl, NaSCN, and NaClO4 by an equilibrium dialysis method. The effect of the salts on the first binding constants and the thermodynamic functions which are accompanied by the dye—polymer association process was investigated relative to the corresponding values in the absence of such salts. It was found that in aqueous solutions of NaCl and LiCl the enthalpy change accompanying the binding is small and the largest contribution to the free energy of binding is from the positive entropy gain. For NaSCN and NaClO4, the values of Δ and Δ were both large and negative and the value of Δ was small and negative. Thus, the favorable free energy for the complex formation was due entirely to the negative enthalpy term. These characteristics of the thermodynamic quantities are discussed in terms of changes in structural properties of water in the vicinity of the binding entities and conformational changes of the polymer to which the dye is bound due to the added foreign electrolytes.  相似文献   

17.
The binding of 4′-dibutylaminoazobenzene-4-sulfonate anion (butyl orange) by bovine serum albumin has been examined quantitatively by an equilibrium dialysis method at 5, 10, 15, 20, 25, and 35°C. The first binding constants and the thermodynamic parameters for the formation of the first dye anion-protein complex have been calculated. The peculiar temperature dependence of the first binding constant could be observed. That is, the value of the first binding constant increases with increasing temperature until it reaches a maximum value at approximately 18°C and then decreases with raising temperature. Accordingly, this binding process is exothermic above 18°C and is endothermic below 18°C. Near 18°C the process exhibits athermal reaction. From the thermodynamic data obtained, it is evident that the favorable free energy of the binding is accompanied by an entropy gain and that the enthalpies of the binding vary from a positive (unfavorable) value below 18°C to a negative (favorable) one above 18°C. Furthermore an apparent temperature dependence of the thermodynamic functions was observed. That is, ΔF° becomes larger in absolute magnitude as the temperature increases. The positive quantity of ΔS° tends to decrease with increasing temperature. All these facts can be interpreted satisfactorily in terms of hydrophobic interactions between hydrophobic portions of the dye and nonpolar parts of the albumin.  相似文献   

18.
The solution properties of random and block copolymers based on 2‐ethyl‐2‐oxazoline (EtOx) and 2‐nonyl‐2‐oxazoline (NonOx) were investigated in binary solvent mixtures ranging from pure water to pure ethanol. The solubility phase diagrams for the random and block copolymers revealed solubility (after heating), insolubility, dispersions, micellization as well as lower critical solution temperature (LCST) and upper critical solution temperature behavior. The random and block copolymers containing over 60 mol % pNonOx were found to be solubilized in ethanol upon heating, whereas the dissolution temperature of the block copolymers was found to be much higher than for the random copolymers due to the higher extent of crystallinity. Furthermore, the block copolymer containing 10 mol % pNonOx exhibited a LCST in aqueous solution at 68.7 °C, whereas the LCST for the random copolymer was found to be only 20.8 °C based on the formation of hydrophobic microdomains in the block copolymer. The random copolymer displayed a small increase in LCST up to a solvent mixture of 9 wt % EtOH, whereas further increase of ethanol led to a decrease in LCST, which is probably due to the “water‐breaking” effect causing an increased attraction between ethanol and the hydrophobic part of the copolymer. In addition, the EtOx‐NonOx block copolymers revealed the formation of micelles and dynamic light scattering demonstrated that the micellar size is increasing with increasing the ethanol content due to the enhanced solubility of EtOx. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 515–522, 2009  相似文献   

19.
Poly‐β‐amides (nylons 3) were synthesized via the anionic polymerization of a series of 4‐alkyl‐4‐methyl‐2‐azetidinones where the alkyl group is a methyl, ethyl, propyl, butyl, or pentyl. The “non‐assisted” polymerization was conducted under vacuum, in the bulk, at 160°C, using potassium 2‐pyrrolidonate as catalyst, whereas the “assisted” polymerization was carried in dimethylsulfoxide, at room temperature, using N‐acetylpyrrolidinone‐2 as activator but it gave no polymer with a propyl or bulkier side group. Side reactions occur in all cases. X‐ray spectra showed that poly(4‐alkyl‐4‐methyl‐2‐azetidinone)s are amorphous with propyl, butyl, and pentyl groups, and semi‐crystalline with methyl or ethyl substituents. Both semi‐crystalline polyamides exhibit an extended planar zigzag conformation, with a fiber identity period along the c axis of 4.9 Å. Glass transition temperatures, melting temperatures, and/or decomposition temperatures are also reported. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 761–769, 1999  相似文献   

20.
The pH dependence of the interaction of poly(2-dimethylaminoethyl methacrylate) and copolymers of 2-dimethylaminoethyl methacrylate and N-vinyl-2-pyrrolidone with methyl orange, 2-p-toluidinylnaphthalene-6-sulfonate (TNS), and 1,6-diphenyl-1,3,5-hexatriene (DHT) was studied by equilibrium dialysis and fluorescence measurements at pH's 7–10. The first binding constant accompanying the binding of methyl orange and TNS by the polymers, in particular the homopolymer, shows a maximum around pH 8 and maximal fluorescence intensity of TNS is obtained around pH 8.5 in the presence of the polymers. To elucidate these observations the pH-induced conformational changes of the homopolymer were examined by potentiometric titration and viscosity measurements and the thermodynamic parameters that accompany the binding were calculated. The polymer was found to change from an extended coil at lower pH to a compact coil at higher pH. The electrostatic attraction between the sulfonate group of the small molecule and the protonated nitrogen atoms on the polymer is increased at lower pH and the hydrophobic interaction between the hydrophobic moieties of the polymer and the small molecule is enhanced at higher pH. The results obtained for the dye binding and fluorescence intensity were discussed in terms of the electrostatic and hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号