首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

2.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. IV. Preparation and Properties of New N-silylated Diphosphazenes Phosphazeno-phosphanes, R3P = N? P(OR′) 2 (R = CH3, N(CH3)2; R′ = CH2? CF3) react with trimethylazido silane to give N-silylated diphosphazenes, R3P = N? P(OR′)2 = N? Si(CH3)3 compounds decompose by atmospherical air to phosphazeno-phosphonamidic acid esters, R3 P?N? P(O)(O? CH2? CF3)(NH2). Thermolysis of diphosphazene R3P = N? P(OR′) 2 = N? Si(CH3)3 (R = CH3, R′ = CH2? CF3) produces phosphazenyl-phosphazenes [N?P(N?P(CH3)3)OR′] n. The compounds are characterized by elementary analysis, IR-, 1H-, 29Si-, 31P-n.m.r., and mass spectroscopy.  相似文献   

3.
Different methods for the preparation of fluorinated iminium salts RR1CNR2R3+MF6? (R=R1=F ; R2=R3=CH3, C2H5 M=As, Sb 4a ? c R=H, R1=F; R2=R3=CH3 M=As, Sb 5a, b R=R1=CF3; R2=H, R3=CH3 M=Sb 12 R=R1=CF3; R2=R3=CH3 M=As 14) are reported, the spectroscopic properties (IR, NMR) of the cations of these salts are briefly discussed. By F?-addition to these salts, e.g. to 16, perfluoroalkyl-bis(alkyl)-amines (e.g. (CF3)2CFN(CH3)2 15) can be prepared; from the methylation of CF3NCF2 bis(trifluoromethyl) methylamine (CF3)2NCH3 (11) was obtained.  相似文献   

4.
Bis(fluorbenzoyloxy)methyl phosphane oxides CH3P(O)[OC(O)R]2 [R = C6H42F (1), C6H43F (2), C6H44F (3), C6H32,6F2 (4), C6H2,3,5,6F4 (5)] were prepared by treating silver salts of carboxylic acids AgOC(O)R with CH3P(O)C?2 (IR-, 1H-, 19?F-and 31P{1H}-NMR-data). The mixed anhydrides 1–5 show unusual thermal stability at room temperature. Stability against hydrolysis decreases with increasing number of fluorine-atoms. The reaction of R′P(O)C?2 [R′ = CH3, C6H5, (CH3)3C] with MIOC(O)RF [RF = CF3, C2F5, C6F5; MI = AgI, NaI T?I] was investigated.  相似文献   

5.
The behavior of [Fe2(CO)42‐PNPR)(μ‐pdt)] (PNPR=(Ph2PCH2)2NR, R=Me ( 1 ), Ph ( 2 ); pdt=S(CH2)3S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNPR appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF3SO3H or CH3SO3H; the cation with a bridging hydride ligand, 1 μH+ (R=Me) or 2 μH+ (R=Ph) is obtained rapidly. Only 1 μH+ can be protonated at the nitrogen atom of the PNP chelate by HBF4?Et2O or CF3SO3H, which results in a positive shift of the proton reduction by approximately 0.15 V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η2‐H2 species in the FeIFeII state. When R=Ph, the bridging hydride cation 2 μH+ cannot be protonated at the amine function by HBF4?Et2O or CF3SO3H, and protonation at the N atom of the one‐electron reduced analogue is also less favored than that of a S atom of the partially de‐coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2 μH+ . The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (kobs≈4–7 s?1) because of the slow intramolecular proton migration and H2 release steps identified by the theoretical study.  相似文献   

6.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

7.
In order to synthesize poly-(fluorinated alkanesulfonamides) a series of model experiments were carried out: (1) reactions of fluorinated alkanesulfonyl fluorides with amines, (2) reactions of fluorinated alkanesulfonyl chloride with amines and (3) reactions of sodium salts of fluorinated alkanesulfonamides with alkyl iodides of fluorinated alkanesulfonic acid esters. Seventeen new fluorinated alkanesulfonamides were prepared in good yields, namely: RFO(CF2)2SO2NR1R2 (1a-h), R1R2NSO2RFSO2NR1R2 (2a-h) and [Cl (CF2)4O(CF2)2SO2NH(CH2)3]2 (3). Reaction of RFSO2NH2 with equivalent amount of NaOCH3 and methyl iodide was shown to give both the N-mono- and N,N-di-substituted amides. Consequently the N-monosubstituted alkanesulfonamides were chosen as monomers for syntheses of the poly-(fluorinated alkanesulfonamides) and two new polymers were synthesized. The effect of the condition of the polycondensation on M?n of the polymers were discussed and elemental composition, 19F NMR, IR, M?n, Tg, tensile strength, thermal and chemical stabilities of the polymers were measured. Several new perfluoroalkanesulfonyl chlorides CISO2RFSO2Cl (4a-c) and fluorinated alkanesulfonic acid esters (6a-d) were synthesized. However, reaction of CFCl2CF2O(CF2)2SO2F with AlCl3 was found to give Cl3CCF2O(CF2)2SO2F (5) instead of the expected sulfonyl chloride.  相似文献   

8.
Smog chamber/FTIR techniques were used to measure k(Cl + HCF2OCF2OCF2‐CF2OCF2H) = k(Cl + HCF2O(CF2O)n(CF2CF2O)mCF2H) = (5.0 ± 1.4) × 10?17 cm3 molecule?1 s?1 in 700 Torr of N2/O2 diluent at 296 ± 1 K. The Cl‐initiated atmospheric oxidation of HCF2OCF2OCF2CF2OCF2H and the sample of HCF2O(CF2O)n(CF2CF2O)mCF2H used in this work gave COF2 in molar yields of (476 ± 36)% and (859 ± 63)%, respectively, with no other observable carbon containing products (i.e., essentially complete conversion of both hydrofluoropolyethers into COF2). The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers of the general formula HCF2O(CF2O)n(CF2CF2O)mCF2H. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 819–825, 2008  相似文献   

9.
The reactions of py‐hz ligands ( L1–L5 ) with Pb(CF3SO3)2?H2O resulted in some rare examples of discrete single‐stranded helical PbII complexes. L1 and L2 formed non‐helical mononuclear complexes [Pb L1 (CF3SO3)2]?CHCl3 and Pb L2 (CF3SO3)2][Pb L2 CF3SO3]CF3SO3?CH3CN, which reflected the high coordination number and effective saturation of PbII by the ligands. The reaction of L3 with PbII resulted in a dinuclear meso‐helicate [Pb2 L3 (CF3SO3)2Br]CF3SO3?CH3CN with a stereochemically‐active lone pair on PbII. L4 directed single‐stranded helicates with PbII, including [Pb2 L4 (CF3SO3)3]CF3SO3?CH3CN and [Pb2 L4 CF3SO3(CH3OH)2](CF3SO3)3?2 CH3OH?2 H2O. The acryloyl‐modified py‐hz ligand L5 formed helical and non‐helical complexes with PbII, including a trinuclear PbII complex [Pb3 L5 (CF3SO3)5]CF3SO3?3CH3CN?Et2O. The high denticity of the long‐stranded py‐hz ligands L4 and L5 was essential to the formation of single‐stranded helicates with PbII.  相似文献   

10.
Forty bis(fluoroalkyl) phosphoramidates (RFO)2P(O)R were prepared in 10-91% yield by treating phosphorochloridates (RFO)2P(O)Cl where RF was HCF2CH2, HCF2CF2CH2, HCF2CF2CF2CF2CH2, CF3CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with nucleophiles HR, where R was NH2, NHMe, NMe2, NHEt and NEt2 in diethyl ether at 0-5 °C. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with ammonia, methylamine, dimethylamine and ethylamine, but not with diethylamine—even on heating in the presence of 4-dimethylaminopyridine—due to steric hindrance at phosphorus. Fluorinated phosphoramidates have lower basicity and nucleophilicity than their unfluorinated counterparts: (EtO)2P(O)NH2 is more easily hydrolysed by HCl than (CF3CH2O)2P(O)NH2 and whereas, (EtO)2P(O)NH2 is known to react with oxalyl chloride and thionyl chloride to give (EtO)2P(O)NCO and (EtO)2P(O)NSO respectively, (CF3CH2O)2P(O)NH2 reacted only with oxalyl chloride to give (CF3CH2O)2P(O)NCO in 10% yield. Two other new fluorinated species, (CF3CH2O)2P(O)NHOMe and (CF3CH2O)2P(O)N3, were prepared by nucleophilic substitution of bis(trifluoroethyl) phosphorochloridate with methoxyamine and azide ion.  相似文献   

11.
The reactivity of bis(fluoroalkyl) phosphorochloridates to nucleophiles is summarised. Previous data and the results described here indicate that reactivities decrease in the order: amines>alcohols>thiols. The synthesis of CF3CH2OP(O)(SEt)2 in 30% yield was accomplished by treating CF3CH2OP(O)Cl2 with two molar equivalents of EtSH and Et3N in ether. The chloridates (CF3CH2O)2P(O)Cl and (C2F5CH2O)2P(O)Cl did not react with MeSH in ether at −78 °C or when heated with Pb(SMe)2 in benzene. Ethanethiol and propanethiol reacted with fluorinated chloridates in the presence of triethylamine to give thiolates (RFO)2P(O)SR in 13-41% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH and R was Et or n-Pr. Similarly, reaction of phosphorobromidates (RFCH2O)2P(O)Br, made by brominating the corresponding bis(fluoroalkyl) H-phosphonates, with benzenethiol gave derivatives (RFCH2O)2P(O)SPh in 43 and 46% yield where RF was CF3 and C2F5, respectively. Treatment of the chloridothiolate Cl(EtO)P(O)SMe, prepared in two steps from triethyl phosphite, with fluoroalcohols and triethylamine in ether gave species RFO(EtO)P(O)SMe in 62-74% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH. The reactions of bis(trifluoroethyl) phosphorochloridate with 2-mercaptoethanol, 3-mercaptopropanol and ethane-1,2-dithiol gave several unexpected products whose structures were tentatively assigned.  相似文献   

12.
Dimethyl-N-Halogenoamine, their Ammonium Salts and Borontrihalide Adducts The preparation and vibrational spectra of (CH3)2NHCl+X? (X? = CF3SO3? I , SO3F? II , SO3Cl? III , BCl4? IV ), and (CH3)2NHBr+CF3SO3? V as well as the adducts (CH3)2NCl · S (S = BF3 VI , BCl3 VII , BBr3 VIII ) and (CH3)2NBr · BF3 IX are reported. The crystal structure of VII has been determined from three-dimensional diffractometer data at ?100°C. The Cl atom and one methyl group in the dimethyl-N-chloroamino group show disorder. The structural data are: B? Cl 183(2) pm, B? N 167(3) pm, N? C 152(3) pm (distances to disordered positions are not included).  相似文献   

13.
For the first time, fluorinated oxathialones, polyfluoroalkylchlorothioformates, chlorocarbonylpolyfluoroalkylsulfenate esters, a chlorocarbonylhexafluoroisopropylidenimino sulfenate, and a 5-tri-fluoromethyl-2-oxo-1,3,4-oxathiazole were synthesized by reacting chlorocarbonylsulfenyl chloride with RfC(O)CH2C(O)R′ (Rf = CF3; R'= CF3, OC2H5), RfO-Li+ (Rf = CF3CH2, (CF3)2C=N-Li+ and CF3C(O)NH2. Perfluorosuccinic acid and mercury(II) trifluoroacetate with ClC(O)SCI gave their respective anhydrides.  相似文献   

14.
Perfluoroalkenyl phosphonates were formed along with Me3SiF using CF3CF=CF2, CF3CH=CF2, F5SCF=CF2 or F5SCH=CF2 and silylated phosphites, (R1O)2POSiMe3 (R1=Et, SiMe3). This straightforward method could be extended to perfluorobutadienes CF2=C(RF)C(RF)=CF2 (RF F=F, CF3). The formation of CF3C(=O)P(=O)(OSiMe3)2 and further reactions to yield bisphosphonates will be described. Acetylphosphonates, R2C(=O)P(=O)(OSiMe3)2 (R2=CH3, CF3) reacted with the ketimine, CH3C(=NiPr)Ph to give α-hydroxy-γ-imino phosphonates. Trifluoroacetylphenol and 2,6-bis(trifluoracetyl)-4-methyl-phenol have been proven to be versatile precursors for α-and γ-hydroxy phosphonates. Intermediates in these reactions were found to be cyclic λ5σ5P species.  相似文献   

15.
Fluorine-containing N,N-alkylidene bisamides RCH(NHCORf)2 (R: H, Aryl; Rf: CF3, CF2Cl, 2,6-C6H3F2) are conveniently prepared in good yields by the reaction of corresponding aldehydes with fluorine-containing amides (RfCONH2) in the presence of fluoroalkanesulfonic acids Rf′SO3H(Rf′: CF3, HCF2CF2, ICF2CF2OCF2CF2).  相似文献   

16.
The use of 5H-3-oxa-octafluoropentanesulfonyl fluoride (HCF2CF2OCF2CF2SO2F) as a novel and efficient condensing reagent for esterification of carboxylic acids with alcohols and amidation of carboxylic acids with amines in the presence of 1,3-diazabicyclo[5.4.0]-undec-7-ene (DBU) is reported. HCF2CF2OCF2CF2SO2F cannot serve as a condensing agent for anhydridization of carboxylic acids, however, HCF2CF2OCF2CF2SO2F/(CH3)3SiCN system can mediate anhydridization of some aromatic carboxylic acids.  相似文献   

17.
We prepared for the first time NH-containing amidosulfites, polyfluoroalkyl N-(trifluoro-methylsulfonyl) amidosulfites CF3SO2NHS(O)ORF, by reaction of N-sulfinyl-trifluoromethanesulfonamide CF3SO2N=S=O with alcohols RFOH. Amidosulfites were formed also in reaction of chlorosulfites RFOS(O)Cl with trifluoromethanesulfonamide, with its sodium salt, and N-trimethylsilyl derivative.  相似文献   

18.
Inhaltsübersicht. Die Reaktion von Difluorhalogenmethanen, CF2X2, mit Phosphanen, R3P, in Gegenwart von Metallen und Carbonylverbindungen, R″R′CO, führt zur Bildung geminaler Difluorolefine, R″R′C=CF2. Die sorgfältige Untersuchung der Einzelschritte dieser komplexen Reaktion zeigt, daß intermediär Difluorhalogenmethylphosphoniumhalogenide, [R3P–CF2X]X, und Difluormethylenphosphorane, R3P – c??-F2, gebildet werden. Die Phosphoniumsalze sind stabil und können als kristalline Substanzen isoliert werden. Durch Metalle oder Phosphene werden sie zu den instabilen Difluormethylenphosphoranen reduziert. Diese zersetzen sich beim Fehlen geeigneter Reaktionspartner in Phosphan und Difluorcarben, CF2. Ihre Bildung durch Addition von CF2 an R3P ist nicht möglich. Mit Halogenwasserstoffen bilden sie Difluormethylphosphoniumsalze, [R3P-CHF2]X. Formation and Stability of Difluoromcthylene Phosphoranes, R3P —c?F2 In the presence of metals and carbonyl compounds, R″R′CO, the reaction of difluoro-halomethanes, CF2X2, with phosphanes, R3P, leads to the formation of geminal difluoroolefins, R″R′C=CF2. Our investigations have proved that difluorohalomethylphosphonium halides, [R3P–CF2X]X, and difluoromethylene phosphoranes, R3P–C??F2, are formed intermediately. The phosphonium salts are stable. They can be isolated as crystalline substances. They are reduced by metals or phosphanes forming unstable difluoromethylene phosphoranes as intermediates. These decompose into phosphane and difluorocarbene, CF2, if suitable reactants are absent. Their reaction with hydrogen halides, HX, yields difluoromethylphosphonium salts, [R3P–CHF2]X. The formation of difluoromethylene phosphoranes by addition of CF2 to R3P is not possible.  相似文献   

19.
Five acrylic esters having different fluorine contents and distributions in their side-groups (i.e., CH2=CHC(O)OR, where R = ? C(CH3)2C6F4H, ? C(CH3)2C6F5, ? C(CF3)2C6F5, ? C(CF3)2C6H5, and ? C(CH3)2C6H5) have been prepared from the reactions of the lithium salts of their corresponding alcohols with acryloyl chloride. These monomers are polymerized under identical conditions by the radical initiator AIBN and five polyacrylates were prepared having the structure of ? [ ? CH2CHC(O)OR? ]n? . These addition polymers were compared and fully characterized by GPC, VPO, DSC, TGA, NMR, IR, and UV-visible spectroscopies, and they showed potential for practical applications. Significant differences in their thermal stabilities were found with respect to fluorine contents and distributions in these polyacrylates, and the highest stability arises from CF3 substitutions in the side-chains of the polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Fluorination of Cyanuric Chloride and Low-Temperature Crystal Structure of [(ClCN)3F]+[AsF6]? The low-temperature fluorination of cyanuric chloride, (ClCN)3, with F2/AsF5 in SO2F2 solution yielded the salt [(ClCN)3F]+ [AsF6]? ( 1 ) essentially in quantitative yield. Compound 1 was identified by a low-temperature single crystal X-ray structure determination: R 3 c, trigonal, a = b = 10.4246(23) Å, c = 15.1850(24) Å, V = 1429.1(4) Å 3, Z = 6, RF = 0.056, Rw = 0.076 (for significant reflections), RF = 0.088, Rw = 0.079 (for all reflections). Fluorination of neat (ClCN)3 with [NF4]+ [Sb2F11]? yielded NF3, CClF3, SbF3, N2 and traces of CF4. A qualitative scale for the oxidizing strength of the oxidative fluorinators NF4+ and (XCN)3F+ (X = H, F, Cl) has been computed ab initio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号