首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A voltammetric procedure in the flow system for determination of traces of Cr(VI) in the presence of Cr(III) and humic acid is presented. The calibration graph is linear from 5×10−10 to 1×10−7 mol l−1 for an accumulation time of 120 s. The R.S.D. for 1×10−8 mol l−1 Cr(VI) is 5.3% (n=5). The detection limit estimated from 3σ for a low concentration of Cr(VI) and accumulation time of 120 s is 2×10−10 mol l−1. The method can be used for Cr(VI) determination in the presence of up to 50 mg l−1 of humic acid. The validation of the method was carried out by studying the recovery of Cr(VI) from spiked river water and by the comparison of the results of determination of Cr(VI) in a soil sample. The method cannot be used for analysis of samples containing high concentrations of chloride ions such as seawater and estuarine water.  相似文献   

2.
A rapid, sensitive and selective procedure for determination of Cr(III) and Cr(VI) in environmental and industrial liquid samples via preconcentration with ammonium pyrrolidine dithiocarbamate (APDC) and determination by means of the EDXRF was described. The effect of pH in the range of 3-11 on the recovery of Cr(III) and Cr(VI) has been investigated separately and in combination of these two species. The influence of organic matter, carbonate species and elements V, Mn and Fe on the recovery of each chromium specie (separately/in combination) over whole pH range was also tested in order to simulate condition occurring in natural waters that usually contain certain amount of dissolved organic matter and carbonate ions. Cr(VI) and Cr(III) have shown different behaviors in reaction with APDC at different pH ranges and therefore it is possible to separate those two species. It was found that Cr(VI) creates complex with APDC only in the pH range from 3 to 5 with quantitative recovery (app. 98%) at pH 3, but there was no recovery of Cr(III) at that pH. On the contrary, in pH range from 6 to 11, reaction with Cr(III) and APDC reviled that the only reaction product is Cr(OH)3 instead of the expected Cr(III)-APDC complex. All reaction products were characterized by IR spectroscopy.  相似文献   

3.
Feasibility and limitations of direct coupling of high performance liquid chromatographic (HPLC) separation to microwave induced plasma (MIP)-optical emission spectrometry (OES) for elementspecific detection was tested and compared to inductively coupled plasma (ICP)-optical emission spectrometric detection on the basis of the Cr(III)/Cr(VI) speciation analysis of water samples. Coupling was performed by a hydraulic high pressure nebulizer (HHPN) radiative-heating/watercooling interface which provides about 20 % and 80 % aerosol yield in the case of helium and argon carrier gases, respectively. Desolvation efficiency of aqueous solutions was approximately 80 %. Applying the ion-pair HPLC separation, the organic eluents and reagents in the MIP cause a 50–75 % signal suppression for Cr(VI) and 25–50 % for Cr(III). In a pure aqueous solution the MIP Cr(VI) signal was by 20 % lower than that of Cr(III). These effects were lower using the ICP source, but they cannot be neglected. Easily ionizable matrix elements (Na, Ca) can cause 70 % signal suppression in the MIP, and 20 % in the ICP. Therefore, species dependent calibration is required in both cases. In the case of HPLC detection by MIP-OES, the detection limit was 13 ng for Cr(III), and 18 ng for Cr(VI). Using the ICP-OES detection, the detection limit was 0.2 ng for Cr (III) and 0.4 ng for Cr (VI). The linear dynamic ranges in both cases were two orders of magnitude. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   

4.
A method is presented for the simultaneous determination of Cr(III) and Cr(VI) in yeast using species-specific double-spike isotope dilution (SSDSID) with anion-exchange liquid chromatography (LC) separation and sector field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. Total Cr is quantitated using ID SF-ICP-MS. Samples were digested on a hot plate at 95±2 °C for 6 h in an alkaline solution of 0.5 M NaOH and 0.28 M Na2CO3 for the determination of Cr(III) and Cr(VI), whereas microwave-assisted decomposition with HNO3 and H2O2 was used for the determination of total Cr. Concentrations of 2,014±16, 1,952±103 and 76±48 mg kg−1 (one standard deviation, n=4, 3, 3), respectively were obtained for total Cr, Cr(III) and Cr(VI) in the yeast sample. Significant oxidation of Cr(III) to Cr(VI) (24.2±7.6% Cr(III) oxidized, n=3) and reduction of Cr(VI) to Cr(III) (37.6±6.5% Cr(VI) reduced, n=3 ) occurred during alkaline extraction and subsequent chromatographic separation at pH 7. Despite this significant bidirectional redox transformation, quantitative recoveries for both Cr(III) and Cr(VI) were achieved using the SSDSID method. In addition, mass balance between total Cr and the sum of Cr(III) and Cr(VI) concentrations was achieved. Method detection limits of 0.3, 2 and 30 mg kg−1 were obtained for total Cr, Cr(VI) and Cr(III), respectively, based on a 0.2-g sub-sample.  相似文献   

5.
Improvement of pulse amperometric detection (PAD) method is demonstrated in determination of ethylenethiourea (imidazolidine‐2‐thione, ETU). The anodic detection of ETU will produce polymeric film on an electrode leading to an inactive electrode surface. Here, the PAD method was used to remove the polymeric film formed on the electrode surface between ETU detection. Further, the scheme was integrated with automated flow injection analysis (AFIA) for determining ETU. The operational parameters of PAD in the AFIA system were discussed thoroughly. The analytical characteristics of the system were evaluated at optimum conditions. The linear range of calibration plot was between 20 to 300 μM (the correlative coefficient, r = 0.999) and the detection limit was 0.9 μM (S/N = 3). The relative standard deviations of detection of 50 μM ETU were 0.82% with and 9.07% without PAD scheme. The results indicate the system is a very promising tool for ETU determination. Finally, the matrix effects of two water samples that were collected from a campus and a farm show good recoveries of 92% and 96%.  相似文献   

6.
There is little conclusive evidence of the toxic effects of Cr(III) so far, but Cr(VI) has carcinogenic activity, so the analysis of the chromine ions is very important in environmental research and the quality control of industry products. Usually Cr(III) and Cr(VI) interfere with each other in the species analysis, the measurement of Cr(VI) of numerous previous papers is related to the Cr(VI) samples, which contain a little Cr(III). When the amount of trivalent chromine exceeds ten …  相似文献   

7.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

8.
《Analytical letters》2012,45(1-3):340-348
A flow injection spectrophotometric procedure with symmetric merging zones for dipyrone determination in pharmaceutical formulations is proposed. The determination is based on the formation of a blue complex (monitored at a wavelength of 642 nm) yield in the complexation reaction of dipyrone with Fe(III) in acid medium. Under optimum conditions, a calibration curve was obtained from 3.5 to 281 mg L?1 with a detection limit of 2.8 mg L?1 and the samples throughput was 80 h?1. The analytical results obtained for commercial formulation samples by applying the proposed method were in good agreement with labeled values and those obtained by a comparative procedure at a 95% confidence level.  相似文献   

9.
《Analytical letters》2012,45(10):1989-1998
Abstract

A sensitive and selective spectrophotometric flow injection analysis (FIA) method with chlorophosphonazo-mN has been developed for the determination of uranium(VI) in standard ore samples. Most of interfering ions are effectively eliminated by the masking reagent of diethylenetriaminepentaacetic acid (DTPA). In the U(VI)-chlorophosphonazo-mN system, the maximum absorption wavelength is at 680 nm and Beer's law is obeyed in the range of 1 to 15 μg ml?1. The correlation coefficient of the calibration curve is 0.9998, the sampling frenquency is 60 h?1, and the detection limit for uranium(VI) is 0.5 μg ml?1. The composition of the U(VI)-chlorophosphonazo-nN complex was established to be 1:2 by flow-through spectrophotometric and conventional molar ratios methods.  相似文献   

10.
《Analytical letters》2012,45(3):605-612
Abstract

Chromium (VI) can oxidize and decolor three colour reagents, i.e. 1,8-dihydroxy-2-(4′-chloro-2′-phosphonophenylazo)-7-(6″.8″-disulfonaphthylazo)-3,6-disulfonaphthalene (RI): 1,8-dihydroxy-2-(4′-chloro-2′-phosphonophenylazo)-7-(4″-sulfonamidephenylazo)-3,6-disulfonaphthalene (RII): and 1,8-dihydroxy-2-(4′-chloro-2′-phosphonophenylazo)-7-(p-hippuric acid azo)-3,6-disulfonaphthalene (RIII). Loss of absorbance of three colour reagents at maximum absorption wavelengths is proportional to the concentration of chromium (VI) in solution. We have made use of the decolorization reactions between chromium (VI) and three colour reagents to determine chromium in steel by flow injection analysis, and relative error in sample determination is less than 5.0%. Response is linear from 0.84 to 6.72 μg/mL and optimum measuring acidity is 1.3–1.7 mol/L H2SO4 in three systems. The effect of interference ions on determination has been studied.  相似文献   

11.
A selective novel reverse flow injection system with chemiluminescence detection (rFI-CL) for the determination of Cr(VI) in presence of Cr(III) with Dichlorotris (1,10-phenanthroline)ruthenium(II), (Ru(phen)3Cl2), is described in this work. This new method is based on the oxidation capacity of Cr(VI) in H2SO4 media. First, the Ruthenium(II) complex is oxidized to Ruthenium(III) complex by Cr(VI) and afterwards it is reduced to the excited state of the Ruthenium(II) complex by a sodium oxalate solution, emitting light inside the detector. The intensity of chemiluminescence (CL) is proportional to the concentration of Cr(VI) and, under optimum conditions, it can be determined over the range of 3-300 μg L−1 with a detection limit of 0.9 μg L−1. The RSD was 8.4% and 1.5% at 5 and 50 μg L−1, respectively. For the rFI-CL method various analytical parameters were optimized: flow rate (1 mL min−1), H2SO4 carrier concentration (20% w/V), Ru(phen)3Cl2 concentration (5 mM) and sodium oxalate concentration (0.1 M). The effect of Cr(III), Fe(III), Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Ca(II) and Mg(II), was studied. The method is highly sensitive and selective, allowing a fast, on-line determination of Cr(VI) in the presence of Cr(III). Finally, the method was tested in four different water samples (tap, reservoir, well and mineral), with good recovery percentage.  相似文献   

12.
The aim of the research on Cr-speciation in plasma is to study the distribution of Cr over the plasma proteins. Cr is known to be mainly bound to transferrin and albumin. Therefore, a suitable separation procedure was developed for the two proteins. It consisted of a combination of FPLC cation and anion exchange, ensuring a complete resolution of both proteins and a total recovery of the Cr.In order to investigate the environmental impact of Cr(III) and Cr(VI) discharges, an aqueous reference material is needed to assess the quality of measurement between different laboratories. A pilot study was initiated to investigate the stability of a Cr(III) and Cr(VI) mixture in a bicarbonate/ carbonate buffer. Different parameters liable to influence the stability of the solutions have been investigated.  相似文献   

13.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

14.
Manuela L. Kim 《Talanta》2009,77(3):1068-93
An hybrid mesoporous material synthesised in our laboratories for solid phase extraction (SPE) in flow through systems has been used for analytical purposes. The solid was obtained from mesoporous silica MCM-41 functionalized with 3-aminopropyltriethoxy silane by Sol-Gel methodology. In order to exploit the large sorption capacity of the material together with the possibility of modeling it for anions retention, a microcolumn (MC) filled with the solid was inserted in a flow system for preconcentration of Cr(VI) and its determination at ultratrace levels in natural waters. The analytical methodology involved a reverse flow injection system (rFI) holding a MC filled with the solid for the analyte extraction. Elution and colorimetric detection were carried out with 1-5 diphenylcarbazide (DPC) in sulfuric acid. DPC produced the reduction of Cr(VI) to Cr(III) together with the generation of a cationic red complex between Cr(III) and 1-5 diphenylcarbazone which was easily eluted and detected with a visible spectrophotometer. Moreover, the filling material got ready for the next sample loading remaining unspoiled for more than 300 cycles.The effect of several variables on the analytical signal as well as the influence of cationic and anionic interferences were discussed. Particular attention was given to sulfuric acid interference since it is the required media for the complex generation.Under optimal conditions, 99.8% of Cr(VI) recovery was obtained for a preconcentration time of 120 s (sample and DPC flow rates = 1 mL min−1) and an elution volume of 250 μL. The limit of detection (3 s) was found to be 0.09 μg L−1 Cr(VI) with a relative standard deviation (n = 10, 3 μg L−1) of 1.8.Since no Cr(III) was retained by the solid material and Cr(VI) was completely adsorbed, electrothermal atomic absorption spectrometry (ET AAS) determinations of Cr(III) were also performed by simply measuring its concentration at the end of the microcolumn after Cr(VI) retention by the mesoporous solid.Applications to the determination of Cr(VI) and Cr(III) in natural waters and the validation of the methodology were also studied.  相似文献   

15.
The present work reports a simple and quick strategy for simultaneous determination of paracetamol (PC) and ascorbic acid (AA) in pharmaceutical formulations using flow injection method with multiple pulse amperometric detection. The method allows the resolution of the mixture without chemical pretreatment of the sample or electrode modification or the use of chemometric techniques for data analysis. The compounds are detected by applying four sequential pulses (waveform) in function of time to a three‐electrode amperometric system that uses a wall‐jet cell with gold as working electrode. AA is direct detected at +0.40 V and PC is indirectly detected at 0.0 V by the reduction (desorption) of the oxidation product (N‐acetyl‐p‐benzoquinoneimine) electrochemically generated at +0.65 V. The fourth potential pulse (?0.05 V) is applied for the complete regeneration (cleaning) of the gold electrode surface. The linear response range was optimized between 5 and 24 mg L?1 for AA and 50 and 240 mg L?1 for PC. The difference between the two responses ranges (10‐fold) present correlation with the concentration of these compounds in two different pharmaceutical formulations available in the Brazilian market. The analytical frequency was calculated in 60 injections per hour. The use of the proposed methodology for PC quantification in the presence of higher AA concentrations was also carried out. Using the standard addition method, it was possible to detect PC in trace levels (LD=0.2 mg L?1) in the presence of 880‐fold more of AA (176 mg L?1).  相似文献   

16.
A flow-based method for the spectrophotometric determination of chromium (VI) in recreational waters with different salinities was developed. Chromium can occur in the environment in different oxidation states with different related physiological properties. With regard to chromium, the speciation is particularly important, as the hexavalent chromium is considered to be carcinogenic. To achieve that purpose, the use of the diphenylcarbazide (DPC) selective colored reaction with the hexavalent chromium was the chosen strategy. The main objective was to develop a direct and simple spectrophotometric method that could cope with the analysis of different types of environmental waters, within different salinity ranges (fresh to marine waters). The potential interference of metal ions, that can usually be present in environmental waters, was assessed and no significant interferences were observed (<10%). For a complete Cr(VI) determination (three replicas) cycle, the corresponding reagents consumption was 75 µg of DPC, 9 mg of ethanol and 54 mg of sulfuric acid. Each cycle takes about 5 min, including the system clean-up. The limit of detection was 6.9 and 12.2 µg L−1 for waters with low and high salt content, respectively. The method was applied for the quantification of chromium (VI) in both fresh and marine water, and the results were in agreement with the reference procedure.  相似文献   

17.
结合微型电化学仪器,研究了一种快速、便携、灵敏的Cr(VI)电化学传感分析平台,用于污水中Cr(VI)的检测。采用三电极体系,差分脉冲阴极溶出伏安法(DPCSV),记录伏安曲线中Cr(VI)的还原峰。Cr(VI)的溶出峰电流与其浓度在2~500 μmol L-1范围内有良好的线性关系,测得Cr(VI)的检测限为0.55 μmol L-1 (28.60 g L-1),达到了国际卫生组织(WHO)规定的饮用水中Cr(VI)的最高含量50 g L-1。测得镀铬厂废水中Cr(VI)含量为2.03 mol L-1,与国标法中光谱学分析法的结果基本一致。该法重现性好、灵敏度高,使其应用在现场实时监测环境中的Cr(VI)具有很大的潜力。  相似文献   

18.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

19.
A flow injection analysis with integrated amperometric alcohol dehydrogenase biosensor and a handheld Mira‐DS Raman spectrometer have been compared for the determination of ethanol in different samples of alcoholic drinks. The biosensor was constructed from the commercial screen‐printed carbon electrode as amperometric transducer and covered by a thin layer comprising alcohol dehydrogenase, reduced single‐layer graphene oxide, rhodium(IV) dioxide, and glutaraldehyde. Both assemblies were tested on analysis of plum brandy, white rum, vodka, white and red wines, strong dark beer, and non‐alcoholic beer. The two principally different analytical methods were critically compared and some limitations found, especially in case of analysis of red wine and beers. Finally, some future improvements of both analytical tools under test outlined.  相似文献   

20.
The acid–base properties of analogous complex ions of chromium(III) and cobalt(III) in aqueous solution have been studied. The equilibrium constants for all metal complexes were determined by using potentiometric and spectrophotometric titration methods. First, dissociation constants for the studied complexes of Cr(III) and Co(III) were determined by means of the potentiometric titration method and using the STOICHIO computer programme. Then, pH-spectrophotometric titrations were performed and the OriginPro 7.5 computer programme was used to calculate the same constants. The measurements using both methods were carried out under the same conditions of temperature, T = 298.15 K, and over the same pH range 2.00–10.00, respectively. It turned out that the two methods used enabled us to obtain acidity constants in very good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号