首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The derivatives of pyrimidin‐4‐one can adopt either a 1H‐ or a 3H‐tautomeric form, which affects the hydrogen‐bonding interactions in cocrystals with compounds containing complementary functional groups. In order to study their tautomeric preferences, we crystallized 2,6‐diaminopyrimidin‐4‐one and 2‐amino‐6‐methylpyrimidin‐4‐one. During various crystallization attempts, four structures of 2,6‐diaminopyrimidin‐4‐one were obtained, namely solvent‐free 2,6‐diaminopyrimidin‐4‐one, C4H6N4O, (I), 2,6‐diaminopyrimidin‐4‐one–dimethylformamide–water (3/4/1), C4H6N4O·1.33C3H7NO·0.33H2O, (Ia), 2,6‐diaminopyrimidin‐4‐one dimethylacetamide monosolvate, C4H6N4O·C4H9NO, (Ib), and 2,6‐diaminopyrimidin‐4‐one–N‐methylpyrrolidin‐2‐one (3/2), C4H6N4O·1.5C5H9NO, (Ic). The 2,6‐diaminopyrimidin‐4‐one molecules exist only as 3H‐tautomers. They form ribbons characterized by R22(8) hydrogen‐bonding interactions, which are further connected to form three‐dimensional networks. An intermolecular N—H...N interaction between amine groups is observed only in (I). This might be the reason for the pyramidalization of the amine group. Crystallization experiments on 2‐amino‐6‐methylpyrimidin‐4‐one yielded two isostructural pseudopolymorphs, namely 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–dimethylacetamide (1/1/1), C5H7N3O·C5H7N3O·C4H9NO, (IIa), and 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H7N3O·C5H7N3O·C5H9NO, (IIb). In both structures, a 1:1 mixture of 1H‐ and 3H‐tautomers is present, which are linked by three hydrogen bonds similar to a Watson–Crick C–G base pair.  相似文献   

2.
Type 6 meso‐ionic [1,2,4]triazolo[5,1‐c]thiadiazoles were synthesised by oxidation of the corresponding N‐methyl‐N'‐(substitutedbenzal)‐5‐amino‐3‐substituted‐1,2,4‐triazol‐1‐yl)thiohydrazide ( 3 ) type bases or their [1,2,4]triazolo[5,1‐d][1,2,3,6]tetrazepin‐5‐thion ( 4 ) type ring tautomers. Besides spectroscopical evidence a preparative proof of their structure was also provided. X‐ray diffraction analysis of 3‐methylthio‐6‐morpholino‐1,2,4‐triazolo[5,1‐c]thiadiazole ( 8 ) showed quite unusual bond lengths for the N1‐S and S‐C3 bonds of the thiadiazole ring proving the meso‐ionic character of these derivatives unequivocally.  相似文献   

3.
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol–imine form 4‐(1‐{[4‐(dimethylamino)benzylidene]hydrazono}ethyl)benzene‐1,3‐diol and the keto–amine form 6‐[(E)‐1‐{[4‐(dimethylamino)benzylidene]hydrazino}ethylidene]‐3‐hydroxycyclohexa‐2,4‐dien‐1‐one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one‐dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds.  相似文献   

4.
The molecules of (±)‐2‐(4‐methoxyphenyl)‐1‐phenethyl‐2,3‐dihydroquinazolin‐4(1H)‐one, C23H22N2O2, (I), and (±)‐2‐(1,3‐benzodioxol‐5‐yl)‐1‐phenethyl‐2,3‐dihydroquinazolin‐4(1H)‐one, C23H20N2O3, (II), have T‐shaped forms in the crystal structure. The tetrahydropyrimidine ring in both structures adopts a sofa conformation. Both molecules are linked by N—H...O and C—H...O hydrogen bonds to form sheets built from alternating R22(8) and R44(26) [R44(24) in (II)] edge‐fused rings. Additionally, the structures are stabilized by extensive C—H...π interactions.  相似文献   

5.
The synthesis of a series of ruthenium 1,5-disubstituted 1,2,3-triazolato complexes, 1,5-disubstituted 1,2,3-triazoles, and a triazolium salt is reported. Treatment of the ruthenium azido complex [Ru]-N3 ( 1 , [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with an excess of ethyl propiolate results in the formation of a mixture of the Z- and E-forms of zwitterionic N(1)-bound N(3)-ethyl acryl-4-carboxylate triazolato complexes [Ru]N3(CH=CHCO2Et)C2H(CO2) ( Z - 2 ) and ( E - 2 ). The arylation of 2 with aromatic bromides gives a series of cationic N(1)-bound N(3)-ethyl acryl-4-alkoxycarbonyl triazolato complexes {[Ru]N3(CH=CHCO2Et)C2H(CO2CH2R)}[Br] ( 3a , R = Ph ; 3b , R = C6F5; 3c , R = 4-C6H4CN, 3d , R = 2,6-C6H3F2) and the subsequent cleavage of the Ru-N bond of 3a–d gives 1,5-disubstituted 1,2,3-triazoles N3(CH=CHCO2Et)C2H(CO2CH2R) ( 4a , R = Ph; 4b , R = C6F5; 4c , R = 4-C6H4CN; 4d , R = 2,6-C6H3F2) and [Ru]-Br. A 1,2,3-triazolium salt [N3(CH=CHCO2Et)(CH2C6F5)C2H2][Br] ( 5 ) was formed by transformation of 4b in BrCH2C6F5/chloroform mixture. The structures of Z-3a and Z-5 were confirmed by single-crystal x-ray diffraction analysis and both complexes participate in non-covalent aromatic interactions in the solid-state structures which can be favorable in the binding of DNA/biomolecular targets and have shown great potential in the application of biologically active anticancer drugs.  相似文献   

6.
《Tetrahedron letters》2004,45(33):6259-6263
An investigation of the tautomerism of the purine derivatives N,N-dimethyl-N′-(7(9)-H-purin-6-yl)-formamidine 1, 6-chloropurine 3 and 6-methoxy purine 5 at low temperatures by NMR spectroscopy has been carried out. Knowledge of tautomeric equilibria is important for predicting N-alkylation positions, hydrogen-bonding patterns, and interactions with biological targets. In the NMR spectra of 1 and 5 at 213 K we observed two sets of signals, whereas at laboratory temperature there was only a single set of signals, reflecting the time-averaged contribution of both components. Based on characteristic values of 13C and 15N chemical shifts and of vicinal 1H-13C scalar coupling constants, the two components of 1 were determined to be the N7-H (71%) and N9-H (29%) tautomers and those of 5 as the N7-H (18%) and N9-H (82%) tautomers. The investigation of 3 revealed a substantial predominance of the N9-H tautomer without any separation of NMR signals at 213 K.  相似文献   

7.
The asymmetric unit of the title compound, 3C10H12N22+·2C10H11N2+·8C6H5NO5P, contains one and a half naphthalene‐1,5‐diaminium cations, in which the half‐molecule has inversion symmetry, one 5‐aminonaphthalen‐1‐aminium cation and four hydrogen (5‐carboxypyridin‐3‐yl)phosphonate anions. The crystal structure is layered and consists of hydrogen‐bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one‐dimensional chains along the [101] direction via hydrogen bonds established between the phosphonate sites. (C)O—H...Npy hydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layers via multiple hydrogen bonds to form a three‐dimensional supramolecular architecture.  相似文献   

8.
The new N‐salicylideneheteroarenamines 1 – 4 were prepared by reacting the biologically relevant 3‐hydroxy‐4‐pyridinecarboxaldehyde ( 5 ) with 1H‐imidazol‐1‐amine ( 6 ), 1H‐pyrazol‐1‐amine ( 7 ), 1H‐1,2,4‐triazol‐1‐amine ( 8 ), and 1H‐1,3,4‐triazol‐1‐amine ( 9 ). Solution 1H‐, 13C‐, and 15N‐NMR were used to establish that the hydroxyimino form A is the predominant tautomer. A combination of 13C‐ and 15N‐CPMAS‐NMR with X‐ray crystallographic studies confirms that the same form is present in the solid state. The stabilities and H‐bond geometries of the different forms, tautomers and rotamers, are discussed by using B3LYP/6‐31G** calculations.  相似文献   

9.
ABSTRACT

Ten N-(2-amino-2-deoxy-β-D-glucopyranoside)-N'-carbamoyl-L-dipeptidylesters with different amino acid sequences in the dipeptide unit were studied by means of IR and 1H NMR spectroscopy. In the IR spectra three bands at 3453, 3420 and 3390 cm-1 were observed which could be assigned to the free NH, the intramolecularly hydrogen bonded NH species forming five-membered, C5, and seven-membered, C7, rings, respectively. Comparing the NH band positions which correspond to the C7 rings of the Gly-Xaa and the Xaa-Gly dipeptidylesters, the signals of the Xaa-Gly sequence were shifted by 10 cm-1 to lower wave numbers indicating stronger hydrogen bonds. The temperature effect dv/dT was an order of magnitude larger for the C7 associates than for C5 showing the highest enthalpy of the C7 hydrogen bond. The 1H NMR spectra give three separate signals for the NH groups. The temperature coefficient ?δ/?T was the largest for N-1-H indicating the formation of less stable hydrogen bonds (C7). The solvent induced changes of the chemical shift of the NH signals was lowest for the N-3-H signal. Obviously the deshielding properties on this function do not vary in dependence of the solvent polarity. The hydrogen/deuterium exchange rate was lowest for the N-6-H proton indicating the lower accessibility of this proton. Combining the results of both spectroscopic methods it can be concluded that the N-1-H forms only C7 rings whereas N-6-H can participate in C5 and C7 intramolecular hydrogen bonds. The strength of the formed C7 associates depends on the amino acid sequence in the dipeptide residue.  相似文献   

10.
In the hydrated adduct N,N′‐di­methyl­piperazine‐1,4‐diium bis(3‐carboxy‐2,3‐di­hydroxy­propanoate) dihydrate, [MeNH(CH2CH2)2NHMe]2+·2(C4H5O6)?·2H2O or C6H16N22+·2C4H5O6?·2H2O, formed between racemic tartaric acid and N,N′‐di­methyl­piperazine (triclinic P, Z′ = 0.5), the cations lie across centres of inversion. The anions alone form chains, and anions and water mol­ecules together form sheets; the sheets are linked by the cations to form a pillared‐layer framework. The supramolecular architecture thus takes the form of a family of N‐dimensional N‐component structures having N = 1, 2 or 3.  相似文献   

11.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

12.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

13.
The reaction of 1 with hydrazines provided hydrazinium-4,7-dioxo-4,7-dihydroindazol-3-olates 2a-e and 4,7-indazolequinones 3f,g depending upon the nature of the substituent present in the reactants. Compounds 3a-g were obtained by treatment of 2a-e with sodium hydroxide. Fixed tautomers 4a-b and 5c-f were synthesized by methylation of the corresponding 3a-f or 2a-2e with diazomethane. Migration of a methyl group of 5c-f from the oxygen at C3 to N1 on heating afforded 6c-f . The tautomerism of 2a-e and 3a-g has been studied by comparing ir, uv, 1H nmr and 13C nmr spectra with those of the fixed tautomers.  相似文献   

14.
The 1H, 13C and 15N NMR spectra in DMSO‐d6 were measured for eight nitraminopyridine N‐oxides, ten 4‐nitropyridine N‐oxides, four 2‐nitraminopyridines and five 4‐nitropyridines. Their chemical shift assignments are based on PFG 1H,X (X = 13C and 15N) HMQC and HMBC experiments. The relative energies for the tautomers of two nitraminopyridine N‐oxides were determined by ab initio HF/6–311G** calculations. A single‐crystal x‐ray structural analysis was made for 4‐methyl‐2‐nitraminopyridine: C6H7O2N3, M = 153.15, triclinic, space group P‐1 (No. 2), a = 7.0275(4), b = 6.8034(3), c = 8.6086(5) Å, α = 103.620(2), β = 90.309(2), γ = 122.215(3)°, V = 334.11(3) Å3, Z = 2. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

16.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde and N‐benzylmethylamine under microwave irradiation gives 5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C19H19N3O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N‐formylated with formic acid or N‐acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E )‐3‐{5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl}‐1‐(4‐bromophenyl)prop‐2‐en‐1‐one, C27H24BrN3O, (II), the N‐formyl derivative (3RS )‐5′‐[benzyl(methyl)amino]‐3′‐methyl‐1′,5‐diphenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole]‐2‐carbaldehyde, C28H27N5O, (III), and the N‐acetyl derivative (3RS )‐2‐acetyl‐5′‐[benzyl(methyl)amino]‐5‐(4‐methoxyphenyl)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole], which crystallizes as the ethanol 0.945‐solvate, C30H31N5O2·0.945C2H6O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C—H…N and C—H…π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C—H…O and C—H…N hydrogen bonds to form sheets of R 22(8) and R 66(42) rings, and those of (IV) are linked by a combination of O—H…N and C—H…O hydrogen bonds to form a ribbon of edge‐fused R 24(16) and R 44(24) rings.  相似文献   

17.
Geometric parameters of the 6-methyluracil molecule were determined by gas-phase electron diffraction: interatomic distances (r a, Å) N1-C2 1.390(3), C2-N3 1.384(3), N3-C4 1.407(3), C4-C5 1.455(10), C5-C6 1.336(20), C1-C6 1.395(3), C-Me 1.519(5); bond angles (deg) N1C2N3 114.1(), C2N3C4 126.3(7), N3C4C5 114.3(5), C4C5C6 121.6(5), C5C6C1 119.7(5), C7C6C5 11C5.4(8), O8C2N1 123.5(1.5), O9C4N3 123.3(10). The heterocycle is planar. One of the C-H bonds of the methyl group and the C5=C6 bond are coplanar. The nearest surrounding of the heterocycle by water molecules (four and five molecules) was examined by AM1 and B3LYP/6-31G** calculations, and the energies of the hydrogen bonds in the heterocycle-water system were estimated.  相似文献   

18.
The title compounds are proton‐transfer compounds of cytosine with nicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium nicotinate monohydrate (cytosinium nicotinate hydrate), C4H6N3O+·C6H4NO2·H2O, (I)] and isonicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium isonicotinate–4‐aminopyrimidin‐2(1H)‐one–water (1/1/2) (cytosinium isonicotinate cytosine dihydrate), C4H6N3O+·C6H4NO2·C4H5N3O·2H2O, (II)]. In (I), the cation and anion are interlinked by N—H...O hydrogen bonding to form a one‐dimensional tape. These tapes are linked through water molecules to form discrete double sheets. In (II), the cytosinium–cytosine base pairs are connected by triple hydrogen bonds, leading to one‐dimensional polymeric ribbons. These ribbons are further interconnected via nicotinate–water and water–water hydrogen bonding, resulting in an overall three‐dimensional network.  相似文献   

19.
The 13C-nmr study was carried out for the tautomerism of the 3-(arylhydrazono)methyl-2-oxo-1,2-dihy-droquinoxalines 1a-g and 2a-e between the hydrazone imine A and diazenylenamine B forms, providing the carbon chemical shifts for the tautomers A and B of compounds 1a-g and 2a-e. The comparison of the carbon chemical shifts for the tautomer B of compounds 1d, 1f , and 2b in deuteriodimethyl sulfoxide with those in deuteriotrifluoroacetic acid showed that the C4a, C5, and diazenyl carbons were considerably shielded presumably due to the azo N-deuteration in deuteriotrifluoroacetic acid.  相似文献   

20.
It is well known that pyrimidin‐4‐one derivatives are able to adopt either the 1H‐ or the 3H‐tautomeric form in (co)crystals, depending on the coformer. As part of ongoing research to investigate the preferred hydrogen‐bonding patterns of active pharmaceutical ingredients and their model systems, 2‐amino‐6‐chloropyrimidin‐4‐one and 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4‐one have been cocrystallized with several coformers and with each other. Since Cl and Br atoms both have versatile possibilities to interact with the coformers, such as via hydrogen or halogen bonds, their behaviour within the crystal packing was also of interest. The experiments yielded five crystal structures, namely 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (1/3), C5H7N2+·C4H3ClN3O·3C4H4ClN3O, (Ia), 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one–2‐aminopyridine (2/10/1), 2C5H7N2+·2C4H3ClN3O·10C4H4ClN3O·C5H6N2, (Ib), the solvent‐free cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one (1/1), C5H6BrN3O·C5H6BrN3O, (II), the solvate 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H6BrN3O·C5H6BrN3O·C5H9NO, (III), and the partial cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (0.635/1/0.365), C5H6BrN3O·C5H6BrN3O·C4H4ClN3O, (IV). All five structures show R22(8) hydrogen‐bond‐based patterns, either by synthon 2 or by synthon 3, which are related to the Watson–Crick base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号