首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligonucleotides continuing 3-deaza-2′-deoxyguanosine ( I ) or its N7-regioisomer 2 were prepared by solid-phase synthesis using P111 chemistry. Protection of 1 or 2 with N,N V-dimethylformamide diethyl acetal followed by 4,4′-dimethoxytritylation afforded imidazo[4,5-c]pyridines 10b and 11b , respectively. The latter were converted into the 3′-phosphonates 10c or lie, respectively; the cyanoethyl N,N-diisopropylphosphoramidite 10d was also prepared. The oligonucleotide building blocks were employed in automated solid-phase synthesis. 1 he self-complementary oligomers 13 , 15 , and 17 were prepared and characterized by enzymatic hydrolysis with snake-venom phosphodiesterase followed by alkaline phosphatase. There CD spectra exhibited the general structure of a B-DNA.  相似文献   

2.
A procedure was developed for the biosynthetic preparation of 15N-labelled guanosine and inosine through the action of a mutant Bacillus subtilis strain. Crude [N2,1,3,7,9-15N]guanosine and [1,3,7,9-15N]inosine were isolated from the culture filtrate by precipitation and anion-exchange chromatography (Scheme 1). No cell lysis and no enzymatic degradation was necessary. The per-isobutyrylated derivatives 1 and 2 were isolated from a complex mixture, purified by virtue of their different lipophilicity, and separated in three steps involving normal-and reversed-phase silica-gel chromatography. One litre of complex nutrient medium yielded 8.44 mmol of guanosine derivative and 2.84 mmol of inosine derivative with high average 15N enrichment (83.5 and 91.9 atom-%, resp.). [N6,1,3,7,9-15N]Adenosine ( 4 ) was obtained from 2′,3′,5′-tri-O-isobutyryl[1,3,7,9-15N]inosine ( 1 ) through the ammonolysis of its 1,2,4-triazolyl derivative with aqueous 15NH3 (Scheme 2).  相似文献   

3.
3-(N",N",S-trialkylisothioureido)quinazolin-4(3H)-ones obtained by the reactions of 3-(N",N"-dialkylthioureido)quinazolin-4(3H)-ones with alkyl halides undergo unusual recyclization into 5-(2-aminophenyl)-2-dialkylamino-1,3,4-oxadiazoles under the action of aqueous solutions of alkali, hydrazine, and primary aliphatic amines. A plausible mechanism of the recyclization was proposed.  相似文献   

4.
The 2′,3′-O-isopropylideneuridine ( 1 ) reacts with MeI in the presence of an excess of NaH in THF giving 2′,3′-O-isopropylidene-5′-O-methyluridine ( 2 ). Prolonged reaction time gives rise to 2′,3′-O-isopropylidene-3,5′-O-dimethyluridine ( 4 ). The use of an equimolar amount of base and alkylating agent results predominantly in methylation at N(3) (→ 3).  相似文献   

5.
Copper and cobalt complexes derived from 3-(N-phenyl)-thiourea-pentanone-2 were characterized by elemental, XRD, FTIR, UV–Vis, SEM and 1H NMR spectroanalytical studies. The X-ray diffraction studies indicate that 3-(N-phenyl)-thiourea-pentanone-2 and complexes with copper and cobalt are crystalline in nature with simple cubic lattice structure. IR spectroscopic data were used to assign characteristic vibrational frequencies of groups present in these compounds. Scanning electron micrograms were used to assign morphology and particle size.  相似文献   

6.
7.
Crystal and solution structures of the enantiomerically pure and the racemic pairs of (η3-allyl) {2-[2′-(diphenylphosphino)phenyl]-4,5-dihydro-4-phenyloxazole}palladium(II) hexafluorophosphates ( 1 , and rac- 1 , resp.) and tetraphenylborates ( 2 , and rac- 2 , resp.) as well as (η3-allyl){2-[2′-(diphenylphosphino)phenyl]-4,5-dihydro-4-isopropyloxazole}palladium(II) tetraphenylborate ( 3 ) were characterized by X-ray crystallography and 1H-NMR spectroscopy. In the solid state, rac- 1 and rac- 2 proved to be disordered with both diastereoisomeric complexes in the crystal. The complexes 2 and 3 exist only in the ‘exo’ form. The X-ray structures show that the [PdII3-allyl)] moiety may adopt different configurations between a nearly symmetrical three-electron PdII3-allyl) system and an asymmetrical allyl group with a η1- and a η2-bonding to the metal center. The [PdII3-allyl)] system of rac- 1 and of ‘endorac- 2 is closer to the former, and that of 2 , ‘exo’-rac- 2 , and 3 closer to the later geometry. The 1H-NMR spectra of the hexafluorophosphates 1 and rac- 1 show two sets of signals of the allylic protons in an ‘exo’/‘endo’ ratio of 2:3. The tetraphenylborates 2, rac- 2 , and 3 give only one set of broad signals of the allylic protons.  相似文献   

8.
9.
The synthesis of oligonucleotides containing N7-(2-deoxy-β-D -erythro-pentofuranosyl)guanine (N7Gd; 1 ) is described. Compound 1 was prepared by nucleobase-anion glycosylation of 2-amino-6-methoxypurine ( 5 ) with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 6 ) followed by detoluoylation and displacement of the MeO group ( 8→10→1 ). Upon base protection with the (dimethylamino)methylidene residue (→ 11 ) the 4,4-dimethoxytrityl group was introduced at OH? C(5′) (→ 12 ). The phosphonate 3 and the phosphoramidite 4 were prepared and used in solid-phase oligonucleotide synthesis. The self-complementary dodecamer d(N7G? C)6 shows sigmoidal melting. The Tm of the duplex is 40°. This demonstrates that guanine residues linked via N(7) of purine to the phosphodiester backbone are able to undergo base pairing with cytosine.  相似文献   

10.
Cycloaddition of dichloroketene to N,N-disubstituted (E)-amino-5-methyl-1,4-hexadien-3-ones IV and (E,E)-1-amino-5-phenyl-1,4-pentadien-3-ones V occurred in moderate to good yield only in the case of aromatic N-substitution to give N,N-disubstituted 4-amino-3,3-dichloro-3,4-dihydro-6-(2-methyl-l-propenyl) (2-phenylethenyl)-2H-pyran-2-ones, which were dehydrochlorinated with DBN to afford in good yield N,N-disubstituted 4-amino-3-chloro-6-(2-methyl-propenyl)(2-phenylethenyl)-2H-pyran-2-ones. In the case of aliphatic N,N-disubstitution (dimethylamino group) of enaminones IV and V, the Cycloaddition led directly in low yield to 3-chloro-4-dimethylamino-6-(2-methyl-l-propenyl)(2-phenylethenyl)-2H-pyran-2-ones.  相似文献   

11.
The desulfurization of several N,2-diaryl-5-(arylimino)-2,5-dihydro-4-nitroisothiazol-3-amines 5 with Ph3P led to complex mixtures of products in low yields. For instance, quinoxaline-2-carboxamide 1-oxides of type 6 (Scheme 2) and, in some cases, also 3-nitroquinolines of type 7 (Scheme 5) were isolated. By the desulfurization of the substituted derivatives 5b – e , a rearrangement of the intermediates yielded 6 and 7 with a different substitution pattern from that expected from the starting materials (Scheme 3). The additional formation of two isomeric 1,2,5-oxadiazole-3-carboxamides 8 was observed only in the case of 5d (R1=R2=F) (Scheme 6). Under the same reaction conditions, the major product of the desulfurization of 5c was the quinoxaline-2-carboxamide 1-oxide 9 (Scheme 7). Reaction mechanisms involving intermediate ketene imines and O transfer from the NO2 group to the neighboring ketene imine are proposed. The structures of 6a , 6e , 6k , 7b , and 8d were established by X-ray crystallography, while the structure of 9 was elucidated by 2D-NMR spectroscopy and corroborated by X-ray crystallography.  相似文献   

12.
The base-pairing properties of N7-(2-deoxy-β-D -erythro-pentofuranosyl)guanine (N7Gd; 1 ) are investigated. The nucleoside 1 was obtained by nucleobase-anion glycosylation. The glycosylation reaction of various 6-alkoxy-purin-2-amines 3a - i with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 8 ) was studied. The N9/N7-glycosylation ratio was found to be 1:1 when 6-isopropoxypurin-2-amine ( 3d ) was used, whereas 6-(2-methoxyethoxy)purin-2-arnine ( 3i ) gave mainly the N9-nucleoside (2:1). Oligonucleotides containing compound 1 were prepared by solid-phase synthesis and hybridized with complementary strands having the four conventional nucleosides located opposite to N7Gd. According to Tm values and enthalpy data of duplex formation, a base pair between N7Gd and dG is suggested. From the possible N7Gd dG base pair motives, Hoogsteen pairing can be excluded as 7-deaza-2′-deoxyguanosine forms the same stable base pair with N7Gd as dG.  相似文献   

13.
The 3-(N,N-Dimethylamino)prop-1-enyl Group as a Chelate Ligand in Indium Organyls InBr3 reacts with Me2NCH2CH?CHMgCl (molar ratio 1 : 2) to form (Me2NCH2CH?CH)2InBr ( 1 ) as the first indium alkenyl compound with amino-functionalized alkenyl groups. The X-ray structure determination shows the formation of a chelate complex. 1 crystallizes in the orthorhombic space group Fddd with the unit cell parameters a = 14.904(2) Å, b = 17.140(1) Å and c = 21.035(2) Å. By reaction of Me2InBr with Me2NCH2CH?CHMgCl (molar ratio 1 : 1) (Me2NCH2CH?CH)InMe2 ( 2 ) is formed as a colorless, at room temperature liquid, monomeric compound. The n.m.r. and mass spectra are discussed.  相似文献   

14.
Eight cyclic triamines with ring sizes between 9 and 13 were synthesized by the p-toluenesulfonate method. The open-chain triamines bis(2-aminoethyl)amine (dien) and bis(3-aminopropyl)amine (diprop) were used as starting materials. In some cases, the corresponding dimeric cyclic hexaamines have been isolated and characterized as major by-products. The complexation of Cu(I) by the triamines has been studied potentiometrically in CH3CN/H2O. All ligands L form ternary complexes [Cu(CH3CN)L]+. The corresponding association constants vary between 1011 and 107, decreasing with increasing ring size. In addition, complexes [Cu(CH3CN)yLH]2+, y = 1 or 2, are found as less important species with maximum concentrations of 7 to 50%.  相似文献   

15.
Oligonucleotides with alternating 8-aza-7-deaza-2′-deoxyadenosine (= c7z8Ad2) and dT residues (see 11, 14 and 16 ) or 4-aminopyrazolo [3,4-d] pyrimidine N2-(β-D -2′-deoxyribofuranoside) (= c7z8A′d1); ( 3 ) and dT residues (see 12 ) have been prepared by solid-phase synthesis using P(III) chemistry, Additionally, palindromic oligomers derived from d(C-T-G-G-A-T-C-C-A-G) but containing 2 or 3 instead of dA (see 18 – 22 ) have been synthesized. Benzoylation of 2 or 3 , followed by 4,4′-dimethoxytritylation and subsequent phosphitylation yielded the methyl or the cyanoethyl phosphoramidites 8a,b and 9 . They were employed in automated. DNA synthesis. Alternating oligomers containing 2 or 3 showed increase dTm values compared to those with dA, in particular 12 with an unusual N2-glycosylic bond. The palindromic oligomers 18 - 22 containing 2 or 3 instead of dA outside of the enzymic recognition side reduced the hydrolysis rate, replacement within d(G-A-T-C) abolished phosphodiester hydrolysis.  相似文献   

16.
The compounds [Cu(N3)(NSC)(tmen)]n (1), [Cu(N3)(NCO)(tmen)]n (2) and [Cu(N3)(NCO)(tmen)]2 (3) (tmen=N,N,N′,N′-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms; two from one N,N,N′,N′-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N3)(NCO)(tmen)]2 (3) crystallizes in the monoclinic system (P21). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by μ(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N3)(NSC)(tmen)]n (1) and [Cu(N3)(NCO)(tmen)]n (2) were investigated and the final decomposition products were identified by X-ray powder diagrams.  相似文献   

17.
The phase diagrams of the systems CsN3/Zn(N3)2 and KN3/Zn(N3)2 have been obtained employing the microscopic technique ofL. Kofler andA. Kofler. Within the system CsN3/Zn(N3)2 three eutectics at 148°C, 142°C, and 210°C were found. Besides Cs2Zn(N3)4, melting incongruently in the interval 153°C to 170°C, there exist two further compounds of the most probable composition Cs3Zn2(N3)7 and CsZn2(N3)5, melting congruently at 170°C and 210°C, resp. In the system KN3/Zn(N3)2 there exist two eutectics at 203°C and 172°C and two compounds, one of them, i.e. K2Zn(N3)4, melting congruently at 206°C, the other one, with composition KZn3(N3)7 or KZn4(N3)9, melting incongruently at 210°C.

Mit 8 Abbildungen

Herrn Professor Dr.Heribert Grubitsch zum 70. Geburtstag gewidmet.  相似文献   

18.
Using 1H, 13C and 15N NMR it has been concluded that 3-deazarpurine protonates exclusively at N-1 with a pK of about 5.6. The base exhibits rapid tautomerism with proportions of 70:30, with the N–7-H tautomer in the majority. The salt exists predominantly as the N-7-H tautomer. 1-Deazapurine protonates essentially in a 1:1 ratio at N-3 and at the imidazole ring, with a pK of about 3.1. This base also exhibits rapid tautomerism with proportions of 30:70, this time with the N-9-H in the majority. The salt also exists in a tautomcric mixture with approximately equal proportions. One form has N-3 and N-9 bearing hydrogens and the other has N-7 and N-9 bearing hydrogens.  相似文献   

19.
The silver and acid hydrogen atoms in the crystal structure of [Ag(pa)(Hpa)] n (Hpa?=?3-(1H-benzimidazol-2-yl) propionic acid-N) both lie on special positions of ?1 site symmetry; the silver atom shows linear coordination [Ag–N?=?2.109(3)?Å, N–Ag–N?=?180°]. The ‘acid hydrogen’ links molecules into a linear chain, and hydrogen bonds between the nitrogen-bound hydrogen atom and the carbonyl oxygen atom of an adjacent chain furnish a three-dimensional supramolecular structure. The compound, C20H19AgN4O4, belongs to the triclinic space group P 1 [a?=?6.536(7), b?=?8.127(9), c?=?9.051(1)?Å; α?=?81.692(2), β?=?82.819(2), γ?=?87.229(2)°], and there is one formula unit in the unit cell.  相似文献   

20.
Nitridophosphates exhibit an intriguing structural diversity with different structural motifs, for example, chains, layers or frameworks. In this contribution the novel nitridophosphate Sr3P3N7 with unprecedented dreier double chains is presented. Crystalline powders were synthesized using the ammonothermal method, while single crystals were obtained by a high-pressure multianvil technique. The crystal structure of Sr3P3N7 was solved and refined from single-crystal X-ray diffraction and confirmed by powder X-ray methods. Sr3P3N7 crystallizes in monoclinic space group P2/c. Energy-dispersive X-ray and Fourier-transformed infrared spectroscopy were conducted to confirm the chemical composition, as well as the absence of NHx functionality. The optical band gap was estimated to be 4.4 eV using diffuse reflectance UV/Vis spectroscopy. Upon doping with Eu2+, Sr3P3N7 shows a broad deep-red to infrared emission (λem=681 nm, fwhm≈3402 cm−1) with an internal quantum efficiency of 42 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号