首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ab initio CI calculations are reported on the lowest quintet, triplet, and singlet states of FeII(P) (NH3)2. The lowest singlet state has strong mixing between the configuration (dxy2 (dπ)4 and (dxy)2(dπ)3egπ*. The lowest quintet is mixed between 6A1g)dπ and (6A1g)egπ*, where 6A1g refers to the high-spin ferric configuration. We calculate many low-energy states as 3(π→π*) ring and metal triplet and quintet configurations [“triptriplets” and “tripquintets”]. The calculations also show low-energy charge-transfer configurations of ring anion excited quartets and ferric quartets and sextets [“quartquartets” and “quartsextets”]. The farthest red x,y-polarized bands of the experimental spectra of low-spin hemoproteins are identified as dxyegπ* or dπd mixed with dπd and the z-polarized bands are assigned as dπegπ*. The farthest red x,y-polarized bands of the high-spin hemoproteins are identified as excited quartsextet states. Picosecond transients observed in FeII(TPP) (pip)2 are attributed to an initial 1(dπegπ*) state, which inter-system crosses to high-spin states that lose one ligand.  相似文献   

2.
We have investigated the potential energy curves (PECs) of the LiN heteronuclear diatomic molecule, including its ionic species LiN+ and LiN, using explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations in conjunction with the correlation consistent quintuple-𝜁 basis set. The effect of core–valence correlation, scalar relativistic effects, and the size of the basis sets has been investigated. A comprehensive set of spectroscopic constants determined based on the above-mentioned calculations are also reported for the lowest electronic states and all systems, including dissociation energies, harmonic and anharmonic vibrational frequencies, and rotational constants. Additional parameters, such as the dipole moments, equilibrium spin-orbit constants, excitation energies, and rovibrational energy levels, are also documented. We found that the three triplet states of LiN, namely, X 3, A 3Π, and 2 3, exhibit substantial potential wells in the PEC diagrams, while the quintet states are repulsive in nature. The ground state of the anion also shows a deep potential well in the vicinity of its equilibrium geometry. In contrast, the ground and excited states of the cation are very loosely bound. Charge transfer properties of each of these states are also analyzed to obtain an in-depth understanding of the interatomic interactions. We found that the core–valence correlation has a substantial effect on the calculated spectroscopic constants.  相似文献   

3.
Ab initio CI calculations are reported on the lowest doublet, quartet, and sextet states of [FeIII(P)(NH3)2]+. The low-spin ground state is calculated as (dxy2 (dπ)3 with dxy(dπ)4 higher by 0.15 eV. The near-ir bands at ~1 eV observed in low-spin ferriheme proteins are attributed to (π → dπ) transitions. The lowest high-spin state is 6A1g, and the near-ir transitions of the high-spin ferriheme proteins observed at ~1.2 eV are attributed to higher 6[tripsextet] excited states [i.e., ring triplet, metal sextet]. The 30-ps “triplet” transient populated with low quantum yield observed in laser-flash studies on FeIII(TPP)CI [TPP = tetrapbenylporphyrin] may be an 1[tripsextet] state.  相似文献   

4.
Density functional theory (DFT ) calculations for the ground state and four excited quintet, two septet, and two triplet states of the molybdenum oxide molecule are reported. Equilibrium geometries and other spectroscopic constants are determined for these states and compared both with recent spectroscopic measurements and other theoretical calculations, where available. Experimental assignments of the 5II ground state and excited 5Σ+, 5Σ?, 5Δ, and B' 5II states are confirmed; also candidates for low-lying triplet3 Δ and 3Σ? and septet 7II and 7Σ+ are presented. Theoretical calculations for 5Σ?, B' 5II, and 3Σ? states are reported for the first time. The results are in many cases in better agreement with experiment than are other calculations, already at the simplest level of approximation within DFT , which confirms that this method is a useful tool for investigation of transition-metal compounds. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Influence of chemical substitution in the FeII spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction.  相似文献   

6.
During the photopolymerization of perdeuterated PTS diacetylene single crystals at low temperatures, excited quintet states (S = 2) are observed Nine ESR transitions per quintet were detected. They are analyzed in terms of a spin hamiltonian for S = 2. They are due to bicarbenes of, probably, short oligomers.  相似文献   

7.
The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter DS = −0.1031 cm−1 among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing.  相似文献   

8.
The formation of spin triplet, quintet, and singlet ground states within the 3d 6 electron configuration is investigated inD 4h , andD 3d symmetries employing irreducible tensor operator methods. Significant differences in the possible ground states are encountered between a complete CI and spin-orbit interaction treatment and an approximate calculation within the cubic5 T 2,1A1,3 T 1, and3 T 2 parents.  相似文献   

9.
Combined CI -HY method calculations are reported for the ground and first three excited S states of He with an error on the order of 10?7 a.u. within the same 120-term basis. For He 1P, the four lowest states are obtained with an error ≤2 × 10?6 a.u. within the same 102-term basis. H?1 S and 1P states are also treated by the same CI -HY technique. The utility of an spd Slater-type orbital, r, v = 0, 1 basis is investigated, with indications that it might be an excellent basis for states of first row atoms.  相似文献   

10.
The relative energies of the three lower-lying singlet states (here called Sa, Sb, and Sc for the sake of generality) and the lowest triplet state of CHX and CX2 carbenes (in which X = Li, BeH, BH2, NH2, OH, or F) are evaluated by means of the semiempirical MNDO method as well as, for some species, by means of ab initio calculations at the 6-31G, MP3/6-31G, and MP3/6-31G* levels. Calculations for CH(CN) and C(CN)2 are also reported. In spite of the known MNDO overestimation of the stability of the σ1π1 configurations of methylene, this method turns out to be satisfactory for most carbenes reported here. Emphasis is put on the appearance of the plots of the ΔH values vs. the carbene bond angles for the different states and on the seldom considered Sb states (1B1 for C2v carbenes). A carbene classification is proposed on the basis of the form of these plots. For carbenes with π-acceptor substituents such as those of “type IA”, open-shell, diradical configurations are predicted for the lowest singlet states, so that no significant structural differences should be expected between their lowest singlet and triplet states. On the other hand, for carbenes with strong π-donor substituents, either “type ID” or “IID”, the closed-shell singlets appear to be the ground states, and the singlet and triplet behaviors should be much more clearly distinguishable.  相似文献   

11.
For a pure quintet state (S = 2) consisting of four electrons interacting via magnetic dipole interaction the following magnetic properties are calculated: zero field splitting, selection rules for magnetic dipole transition in zero field, anisotropy of the ESR resonance fields, ESR selection rules and effective spin. The comparison with experimental ESR spectra on intermediate states during the photopolymerisation of diacetylene crystals shows that these states are quintet states.  相似文献   

12.
Michael H. Palmer   《Chemical physics》2009,360(1-3):150-161
The 1,2,5-oxadiazole VUV absorption spectrum in the range 5–11.5 eV, shows broad bands centred near 6.2, 7.1, 8.3, 8.8, 10.6 and 11.3 eV. Rydberg states associated with three ionisation energies (IE) were identified in the complex fine structure above 8.7 eV. Electronic vertical excitation energies for singlet and triplet valence, and Rydberg states were computed using ab initio multi-reference multi-root CI methods. There is generally a good correlation between the envelope of the theoretical intensities and the experimental spectrum. The nature of the more intense calculated Rydberg states, and positions of the main valence and Rydberg bands are discussed. The lowest triplet, singlet and Rydberg 3s excited states have equilibrium structures that are non-planar with CS symmetry, in a chair-like orientation where the O and H atoms lie out of the NCCN plane. This finding is consistent with the doubling of the low energy UV spectral lines [B.J. Forrest, A.W. Richardson, Can. J. Chem., 50 (1972) 2088].The nearly degenerate IE of the UV-photoelectron spectrum (UV–PES, Palmer et al. 1977) makes analysis of the VUV spectrum difficult, leading to the necessity for reinvestigation. Vertical studies (IEV) using CI, Tamm–Dancoff (TDA) and Green’s Function (GF) methods all gave similar results, with near degeneracy of the first 3IEV confirming the earlier study. Studies of the adiabatic IE (IEA) using CCSD(T) and B3LYP methods, showed the energy sequence 2A2 < 2B1 < 2B2, but these states are all saddle points, in contrast to the 4th state (2A1) which is a minimum. In contrast, MP2 study of the 2B2 state showed a minimum, with only two saddle points.Complete minima were found after minor twisting of the structures. The lowest energy cationic state is 2A (CS), which closely resembles the 2B2 state. The O–N–C–C skeleton is twisted by 8°. The corresponding 2A state (CS) is effectively identical to the 2B1 state. Attempts to find minima for other symmetry states were unsuccessful.  相似文献   

13.
We have studied the magnetic properties of an Fe(II) spin-crossover complex near its high spin/low spin (HS/LS) phase transition in the emulsion polymerization of trifluoroethylmethacrylate (TFEMA) using poly(vinyl alcohol) (PVA) as a protective colloid, in comparison with sodium lauryl sulfate (SLS). Morphological analysis was used to establish that the nanodispersed spin-crossover complex was incorporated into the cores of polymer particles covered with PVA shells. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiplet states such as the triplet (S = 1) and quintet (S = 2) states, and the paramagnetic state (S = 1/2), by noting a gradual shift of g-value anisotropy in the electron spin resonance (ESR) spectrum at 5 K. This was thought to have arisen from the exchange interaction as a Jahn–Teller effect in the emulsion particles. Chemical modifications such as ligand substitution, and the nature of the central metal atom in the emulsion particle, especially influenced the HS/LS phase transition.  相似文献   

14.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

15.
Summary The valence excited states and the 3s, 3p, and 3d (united atom) Rydberg states of benzene and phenol have been obtained by the CASPT2 method, which computes a second-order perturbation correction to complete active space self-consistent field (CASSCF) energies. All non-zero dipole oscillator strengths are also computed, at the CASSCF level. For benzene, 16 singlet and 16 triplet states with excitation energies up to ca. 7.86 eV (63 400 cm–1) are obtained. Of these, 12 singlet and three triplet energies are experimentally known well enough to allow meaningful comparison. The average error is around 0.1 eV. The highest of these singlet states (21 E2g) is the highest valence * state predicted by elementary -electron theory. Its energy is then considerably lower than has been suggested from laser flash experiments, but in perfect agreement with a reinterpretation of that experiment. For phenol, 27 singlet states are obtained, in the range 4.53–7.84 eV (63 300 cm–1). Only the lowest has a well-known experimental energy, which agrees with the computed result within 0.03 eV. The ionization energy is in error by 0.05 eV.  相似文献   

16.
The mechanism of the low temperature polymerization reaction in TSHD diacetylene crystals has been investigated by the transient ESR of the paramagnetic triplet (S = 1) and quintet (S ≈ 2) reaction intermediates. The reaction schemes of the thermal and optical addition and transformation reactions after UV photoinitiation are obtained. The activation energies of the chain propagation reaction and the singlet—triplet and singlet—quintet energy separations of the different dicarbene and diradical intermediates are deduced from the experiments.  相似文献   

17.
Complete active space self-consistent-field (CASSCF) and multiconfigurational second-order perturbation theory (CASPT2) calculations in conjunction with the ANO-L basis set were performed to investigate systematically the low-lying electronic states of HNCS and its ions in C s symmetry. Our highly accurate calculation indicated that theoretically determined geometric parameters and harmonic vibrational frequencies for the ground-state X 1A′ are in good agreement with observed experimental data. The geometry of triplet HNCS is clearly favored C 1 symmetry, and the relative energy is predicted to be 3.000 eV (69.2 kcal/mol). The vertical transition energies for the selected excited states of HNCS were calculated at CASSCF/CASPT2/ANO-L level of theory based on CASSCF optimized geometry. Except for a few linear states of X 2Π (12A′, 12A″), 14Σ (14A″), and 12Σ+ (32A′) states of HNCS+, our results confirmed that the majority of excited states are twisted trans-bend structures. The existence of bound excited anion states has been found for the first time in HNCS. A more elaborate examination of ionization potential of HNCS (AIP, VIP) than previous reports has been presented.  相似文献   

18.
Extensive high-level quantum-chemical calculations reveal that the rod-shaped molecule BeOBeC, which was recently generated in matrix experiments, exists in two nearly isoenergetic states, the 5Σ quintet (5 6 ) and the 3Σ triplet (3 6 ). Their IR features are hardly distinguishable at finite temperature. The major difference concerns the mode of spin coupling between the terminal beryllium and carbon atoms. Further, the ground-state potential-energy surface of the [2Be,C,O] system at 4 K is presented and differences between the photochemical and thermal behaviors are highlighted. Finally, a previously not considered, so far unknown C2v-symmetric rhombus-like four-membered ring 3[Be(O)(C)Be] (3 5 ) is predicted to represent the global minimum on the potential-energy surface.  相似文献   

19.
Summary We compute the potential energy surfaces of 12 electronic states of OsH2 (four quintet, four triplet, and four singlet) arising from5 D ground state of the Os atom as well as triplet and singlet excited states using the complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by multireference configuration interaction (MRCI) and relativistic CI (RCI) calculation which include up to 430,000 configurations. We find that the5 D ground state of Os atom does not insert into H2 while the excited3 F state of Os does. The3 B 1 ground state of OsH2 (there are two other nearly degenerate states) in the absence of spin-orbit coupling was found to be 22 kcal/mol more stable than Os(5 D)+H2. The spin-orbit mixing of3 B 1,3 B 2,3 A 2, and1 A 1 states was so strong that it induces significant change in bond angles (up to 10°) for OsH2.Dedicated to Prof. Klaus RuedenbergCamille and Henry Dreyfus Teacher-Scholar  相似文献   

20.
Photochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data. Our results predict that both the S1 and T1 states are π-π* in nature, which renders a high oscillator strength for S0 to S1 transition. Major triplet exciton conversion occurs through intersystem crossing (ISC) channel between the S1 (1π-π*) and high energy 3n- π* state. Apart from that, there is both radiative and non-radiative channel from S1 to S0, which competes with the ISC channel and reduces the triplet harvesting efficiency. For thioxanthones with −OMe (Me=Methyl) or −F substitution at 2 or 2’ positions, the ISC channel is not energetically feasible, causing sluggish intersystem crossing quantum yield (ΦISC). For unsubstituted thioxanthone and for isopropyl substitution at 2’ position, the S1-T1 gap is slightly positive ( ), rendering a lower triplet harvesting efficiency. For systems with −OMe or −F substitution at 3 or 3’ position of thioxanthone, because of buried π state and high energy π* state, the S1-3nπ* gap becomes negative. This leads to a high ΦISC (>0.9), which is key to being an effective photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号