首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
It is often assumed in the conventional electrophoresis analysis that the liquid phase contains only one kind of each cation and anion. That analysis is extended to the case where the liquid phase contains multiple ionic species in this study so that the conditions considered are closer to reality. Using a dispersion of SiO(2) particles, which is of a charge-regulated nature, as an example, where the dispersion pH is adjusted by HCl and NaOH, numerical simulation is conducted to examine the electrophoretic behaviors of the particle under various conditions. We show that the presence of multiple ionic species is capable of yielding profound and interesting electrophoretic behaviors, which are justified by the experimental data in the literature. In addition, we show that two types of double-layer polarization (DLP) are present that have not been reported previously in the electrophoresis analyses. Type I DLP, which reduces the mobility of a particle, occurs inside the double layer, and type II DLP, which raises that mobility, occurs immediately outside the double layer.  相似文献   

2.
The influence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering the electrophoresis of a nonconducting ellipsoid along the axis of a cylindrical pore at the level of the linear Poisson-Boltzmann equation ignoring the polarization effect. The problem considered simulates the electrophoresis conducted in a narrow space such as capillary electrophoresis and electrophoresis through a porous medium. Here, because the effect of electroosmotic flow can be important the electrophoretic behavior is much more complicated than that for the case where a boundary is uncharged. The influences of the thickness of double layer, the aspect ratio of an ellipsoid, the relative radius of a pore, and the charge conditions on the ellipsoid and pore surfaces on the mobility of the ellipsoid are discussed. Several interesting but nonintuitive electrophoretic behaviors are observed.  相似文献   

3.
The effect of the presence of a charged boundary on the electrophoretic behavior of a particle is investigated by considering a sphere at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electric field. Previous analyses are modified by using a more realistic electrostatic force formula and several interesting results, which are not reported in the literature, are observed. We show that the qualitative behavior of a particle depends largely on its position, its size relative to that of a cavity, and the thickness of the electric double layer. In general, the presence of a cavity has the effect of increasing the conventional hydrodynamic drag on a particle through a nonslip condition on the former. Also, a decrease in the thickness of the double layer surrounding a sphere has the effect of increasing the electrostatic force acting on its surface so that its mobility increases. However, this may not be the case when an uncharged particle in placed in a positively charged cavity, where the electroosmotic flow plays a role; for example, the mobility can exhibit a local maximum and the direction of electrophoresis can change.  相似文献   

4.
The boundary effect on the electrophoresis of particles covered by a membrane layer is discussed by considering a spherical particle in a spherical cavity under the conditions where the effect of double-layer polarization can be significant. The influence of the key parameters of the system under consideration on the electrophoretic mobility of a particle is investigated. These include the surface potential; the thickness of the double layer; the relative size of the cavity; and the thickness, the fixed charge density, and the friction coefficient of the membrane layer. The fixed charge in the membrane layer of a particle is found to have a significant influence on its electrophoretic behavior. For instance, depending upon the amount of fixed charge in the membrane layer, the mobility of a particle may exhibit a local minimum as the thickness of the double layer varies.  相似文献   

5.
The electrophoresis of a rigid sphere along the axis of a cylindrical pore is investigated theoretically. Previous analysis is extended to the case where the effects of double-layer polarization and electroosmotic flow can be significant. The influences of the surface potential, the thickness of the double layer, and the relative size of a pore on the electrophoretic behavior of a sphere are discussed. Some interesting results are observed. For example, if both a sphere and a pore are positively charged, then the mobility of the sphere has a local minimum as the thickness of its double layer varies. Depending upon the level of the surface potential of a sphere and the degree of significance of the boundary effect, the mobility of the sphere may change its sign twice as the thickness of its double layer varies. This result can play a significant role in electrophoresis measurements.  相似文献   

6.
Transient electrophoresis of dielectric spheres   总被引:1,自引:0,他引:1  
The dynamic electrophoretic response of a spherical dielectric particle suspended in an electrolyte solution to a step change in the applied electrics field is analytically studied. The electrical double layer surrounding the particle may have either a small but finite thickness or a very large thickness relative to the particle radius. For the case of electrophoresis of a particle with a thin double layer, the local electroosmotic velocity at the outer edge of the double layer evolving with time after the external field is imposed is used as an apparent slip boundary condition at the particle surface so that the unsteady equation of motion for the fluid flow outside the double layer is solved. Closed-form formulas for the transient electrophoretic mobility of the particle are derived as functions of relevant parameters. The results demonstrate that, when the double layer surrounding the particle is relatively thin, the normalized electrophoretic mobility at a given dimensionless time decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. When the double layer of the particle is relatively thick, the particle mobility can have magnitudes comparable to those for a particle with a thin double layer in the initial stage, but will become much smaller afterward. In general, the effect of the relaxation time for transient electrophoresis is negligible, regardless of the value of kappaa.  相似文献   

7.
The electrophoresis of a spherical particle along the axis of a cylindrical pore is investigated under conditions of low surface potential and thick double layer. In particular, the effect of electroosmotic flow is taken into account. The results of numerical simulation reveal that if both particle and pore are positively charged, the variation of the mobility of a particle may have a local minimum as the thickness of the double layer varies, which is not reported in the literature. This is mainly due to the charge induced on the particle surface, which arises from the presence of the charged boundary. Depending upon the level of the surface potential of the pore, the presence of the local minima may lead to a reversal in the direction of particle movement as the thickness of the double layer surrounding it varies: if the surface potential is either too low or too high, reversal does not occur; if it has a medium level, reversal occurs twice. This interesting observation can play a role in electrophoresis measurements. Previous analysis predicts that reversal always occurs once, regardless of the level of the surface potential of the pore.  相似文献   

8.
The boundary effect on electrophoresis is investigated by considering a spherical particle at an arbitrary position in a spherical cavity. Our previous analysis is extended to the case where the effect of double-layer polarization can be significant. Also, the effect of a charged boundary, which yields an electroosmotic flow and a pressure gradient, thereby making the problem under consideration more complicated, is investigated. The influences of the level of the surface potential, the thickness of double layer, the relative size of a sphere, and its position in a cavity on the electrophoretic behavior of the sphere are discussed. Some results that are of practical significance are observed. For example, if a positively charged sphere is placed in an uncharged cavity, its mobility may have a local minimum as the thickness of the double layer varies. If an uncharged sphere is placed in a positively charged cavity, the mobility may have a local minimum as the position of the sphere varies. Also, if the size of a sphere is fixed, its mobility may have a local minimum as the size of a cavity varies. These provide useful information for the design of an electrophoresis apparatus.  相似文献   

9.
The electrophoresis of a rigid, positively charged ellipsoidal particle at the center of a spherical cavity is investigated theoretically under the conditions where the effects of double-layer polarization and the presence of an electroosmotic flow can be important. The equations governing the problem under consideration and the associated boundary conditions are solved numerically, and the influences of the key parameters on the electrophoretic mobility of the particle are discussed. We show that if the cavity is uncharged, the effect of double-layer polarization yields a local minimum in the electrophoretic mobility as the thickness of the double layer varies. This local minimum disappears if the cavity is also positively charged. In addition to reducing the scaled mobility of an ellipsoid, the presence of the boundary is also capable of influencing the relative magnitudes of the scaled mobility for particles of various shapes. For instance, if the volume of an ellipsoid is fixed, the scaled mobility ranks as prolate > sphere > oblate if the boundary effect is unimportant, but that order is reversed if the boundary effect is important.  相似文献   

10.
The influence of electroosmotic flow (EOF) on the electrophoretic behavior of a particle is investigated by considering a rigid sphere in a charge-regulated, zwitterionic cylindrical pore filled with an aqueous solution containing multiple ionic species. This extends conventional analyses to a more general and realistic case. Taking a pore with pK(a) = 7 and pK(b) = 2 (point of zero charge is pH = 2.5) filled with an aqueous NaCl solution as an example, several interesting results are observed. For instance, if pH < 5.5, the particle mobility is influenced mainly by boundary effect, and is influenced by both EOF and boundary effects if pH ≥ 5.5. If pH is sufficiently high, the particle behavior is dominated by EOF, which might alter the direction of electrophoresis. The ratio of (pore radius/particle radius) influences not only the boundary effect, but also the strength of EOF. If the boundary effect is insignificant, the mobility varies roughly linearly with log(bulk salt concentration). These findings are of practical significance to both the interpretation of experimental data and the design of electrophoresis devices.  相似文献   

11.
Boundary effects can have a profound influence on the electrophoretic behavior of a charged entity, in particular, when the entity is nonspherical and its surface conditions are dependent upon the nearby environment. In this study, the electrophoresis of a spheroid along the axis of an uncharged cylindrical pore is analyzed for the case where the electrical potential is low and the applied electric field is weak. We consider the case where the surface of a particle contains dissociable acidic and basic functional groups, which simulate biological colloids and entities covered by an artificial membrane. This leads to a mixed-type boundary value problem, which extends the conventional constant-surface-potential and constant-surface-charge-density models to a more general case. The effects of the particle aspect ratio, the relative magnitudes of particle and pore, the thickness of the double layer surrounding a particle, and the pH of the liquid phase on the electrophoretic mobility of a particle are investigated. Several interesting results are observed; for example, if the volume of a particle is fixed, its mobility may have a local maximum as the relative magnitudes of its two axes vary.  相似文献   

12.
Hsu JP  Kuo CC  Ku MH 《Electrophoresis》2006,27(16):3155-3165
The electrophoresis of a toroid (doughnut-shaped entity) along the axis of a long cylindrical pore is analyzed under the conditions of low surface potential and weak applied electric field. The system under consideration is capable of modeling the electrophoretic behavior of various types of biocolloid such as bacterial DNA, plasmid DNA, and anabaenopsis, in a confined space. The influences of the key parameters of the problem, including the sizes of a toroid, the radius of a pore, and the thickness of the double layer, on the electrophoretic mobility of a toroid are discussed. We show that the electrophoretic behavior of a toroid under typical conditions can be different from that of an integrated entity. For instance, although the presence of the pore wall has the effect of retarding the movement of a particle, it becomes advantageous if a toroid is sufficiently close to the boundary. Several interesting behaviors are also observed, for example, the mobility of a toroid when the boundary effect is significant can be larger than that when it is insignificant.  相似文献   

13.
Many biocolloids, biological cells and micro-organisms are soft particles, consisted with a rigid inner core covered by an ion-permeable porous membrane layer. The electrophoretic motion of a soft spherical nanoparticle in a nanopore filled with an electrolyte solution has been investigated using a continuum mathematical model. The model includes the Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes and Brinkman equations for the hydrodynamic fields outside and inside the porous membrane layer, respectively. The effects of the “softness” of the nanoparticle on its electrophoretic velocity along the axis of a nanopore are examined with changes in the ratio of the radius of the rigid core to the double layer thickness, the ratio of the thickness of the porous membrane layer to the radius of the rigid core, the friction coefficient of the porous membrane layer, the fixed charge inside the porous membrane layer of the particle and the ratio of the radius of the nanopore to that of the rigid core. The presence of the soft membrane layer significantly affects the particle electrophoretic mobility.  相似文献   

14.
The electrophoretic behavior of a concentrated dispersion of soft spherical particles is investigated theoretically, taking the effects of double-layer overlapping and double-layer polarization into account. Here, a particle comprises a rigid core and an ion-penetrable layer containing fixed charge, which mimics biocolloids and particles covered by artificial membrane layers. A cell model is adopted to simulate the system under consideration, and a pseudo-spectral method based on Chebyshev polynomials is chosen for the resolution of the governing electrokinetic equations. The influence of the key parameters, including the thickness of the double layer, the concentration of particles, the surface potential of the rigid core of a particle, and the thickness, the amount of fixed charge, and the friction coefficient of the membrane layer of a particle on the electrophoretic behavior of the system under consideration is discussed. We show that while the result for the case of a dispersion containing rigid particles can be recovered as the limiting case of a dispersion containing soft particles, qualitative behaviors that are not present in the former are observed in the latter.  相似文献   

15.
The electrophoretic mobility of a spherical colloidal particle with low zeta potential near a solid charged boundary is calculated numerically for arbitrary values of the double layer thickness by a generalization of Teubner's method to the case of bounded flow. Three examples are considered: a sphere near a nonconducting planar wall with electric field parallel to the wall, near a perfectly conducting planar wall with electric field perpendicular to the wall, and on the axis of a cylindrical pore with electric field parallel to the axis. The results are compared with recent analytical calculations using the method of reflections. For the case of a charged sphere near a neutral surface, the reflection results are quite good, provided there is no double layer overlap, in which case there can be extra effects for constant potential particles that are entirely missed by the analytical expressions. For a neutral sphere near a charged surface, the reflection results are less successful. The main reason is that the particle feels the profile of the electroosmotic flow, an effect ignored by construction in the method of reflections. The general case is a combination of these, so that the reflections are more reliable when the electrophoretic motion dominates the electroosmotic flow. The effect on particle mobility of particle-wall interactions follows the trend expected on geometric grounds in that sphere-plane interactions are stronger than sphere-sphere interactions and the effect on a sphere in a cylindrical pore is stronger still. In the latter case, particle mobility can fall by more than 50% for thick double layers and a sphere half the diameter of the pore. The agreement between numerical results and analytical results follows the same trend, being worst for the sphere in a pore. Nevertheless, the reflections can be reliable for some geometries if there is no double layer overlap. This is demonstrated for a specific example where reflection results have previously been compared with experiments on protein mobility through a membrane (J. Ennis et al., 1996, J. Membrane Sci. 119, 47). Copyright 1999 Academic Press.  相似文献   

16.
The electrophoresis of a concentrated dispersion of soft particles, where a particle comprises a rigid core and an ion-penetrable membrane layer, is modeled theoretically, taking the effect of double-layer polarization into account. In particular, the influence of a stress-jump condition of the flow field at the membrane layer-liquid interface on the electrophoretic mobility of a particle is investigated. The type of particles considered mimic biocolloids, such as cells and microorganisms, and inorganic colloids covered by an artificial polymer layer such as surfactant molecules. A unit cell model is adopted to simulate the present spherical dispersion, and the governing equations and the associated boundary conditions are solved by a pseudo-spectral method based on Chebyshev polynomials. We show that while the stress-jump condition, characterized by a stress-jump coefficient, can have a significant influence on the mobility of a particle, the associated flow field is not influenced appreciably. Also, the influence of the stress-jump condition on the mobility of a particle depends largely on the nature of the membrane layer, characterized by its friction coefficient.  相似文献   

17.
An analytical study is presented for the transient electrophoretic response of a circular cylindrical particle to the step application of an electric field. The electric double layer adjacent to the particle surface is thin but finite compared with the radius of the particle. The time‐evolving electroosmotic velocity at the outer boundary of the double layer is utilized as a slip condition so that the transient momentum conservation equation for the bulk fluid flow is solved. Explicit formulas for the unsteady electrophoretic velocity of the particle are obtained for both axially and transversely applied electric fields, and can be linearly superimposed for an arbitrarily‐oriented applied field. If the cylindrical particle is neutrally buoyant in the suspending fluid, the transient electrophoretic velocity is independent of the orientation of the particle relative to the applied electric field and will be in the direction of the applied field. If the particle is different in density from the fluid, then the direction of electrophoresis will not coincide with that of the applied field until the steady state is attained. The growth of the electrophoretic mobility with the elapsed time for a cylindrical particle is substantially slower than for a spherical particle.  相似文献   

18.
19.
The electrophoresis of a spherical particle along the axis of a cylindrical pore filled with a Carreau fluid is investigated theoretically. In addition to the boundary effect due to the presence of the pore, the influences of the thickness of double layer surrounding a particle and the properties of the fluid on the electrophoretic behavior of the particle are also examined. We show that, in general, the presence of the pore has the effect of retarding the movement of a particle. On the other hand, the shear-thinning nature of the liquid phase is advantageous to its movement. For both Newtonian and Carreau fluids, the mobility of a particle increases monotonically with the decrease in the thickness of double layer, but the mobility is more sensitive to the variation of the thickness of double layer in the latter. The mobility of a particle in a Carreau fluid is larger than that in the corresponding Newtonian fluid, and the difference between the two increases with the decrease in double-layer thickness; in addition, depending upon the values of the parameters assumed, the percentage difference can be in the order of 50%.  相似文献   

20.
The influence of the electroosmotic flow profile on the efficiency and resolution of capillary electrophoresis is studied. The mathematical model is formulated and the set of equations is solved numerically. The results of the analysis are applicable to a wide range of buffer concentrations and capillary diameters. The temperature dependence of electrophoretic mobility, viscosity and thermal conductivity and the dependence of electrical conductivity on temperature and ion concentration in the double layer are taken into account. It is shown that there exists a region of buffer concentrations and capillary diameters where the influence of the electroosmotic flow profile on the efficiency and resolution is much greater than that of the temperature dependence of the electrophoretic mobility. The results are especially essential for small buffer concentrations or capillary diameters comparable with the double electrical layer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号