首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The foam properties of mixtures of an eco-friendly amino-acid derived surfactant sodium lauroylglutamate (LGS) interacting with cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), nonionic surfactant laurel alkanolamide (LAA) and anionic surfactant sodium dodecyl sulfonate (SDS), were investigated, respectively. It was amazing that the three investigated binary-mixed systems all showed obviously synergism effect on foaming, though LGS/DTAB catanionic mixture showed remarkable synergistic effect with no surprise. The equilibrium and dynamic surface activity, along with the interfacial molecular array behaviors of binary-mixed systems with different molar ratios at air/water surface were also studied. Moreover, the theoretical simulation was employed to investigate how the interfacial behaviors of surfactants at air/water surface affected the foam properties. The study might provide the meaningful guidance for utilizing the LGS-based systems, especially in constructing eco-friendly foam systems in the application areas of cosmetics, medicine and detergent.  相似文献   

2.
In this study,the photoisomerization of trans-sfilbene was carried out in water in oil (W/O) microemulsions by using sodium dodecyl sulfate (SDS),dodecyl trimethyl ammonium bromide (DTAB) and cetyl trimethyl ammonium bromide (CTAB) as surfactant,respectively.The catalytic effect of microemulsion on this reaction is closely related to the structure of surfactant.When there is no photosensitizer 9,10-dicyanoanthracene (DCA),the surfactant with shorter hydrophobic chain is preferred,while in the presence of DCA,the surfactant with anionic polar group is preferred.  相似文献   

3.
表面活性剂胶束形状随浓度转变的核磁共振研究   总被引:1,自引:0,他引:1  
运用核磁共振一维氢谱和自扩散实验方法研究了聚乙烯乙二醇异辛酚醚(TX-100)、十二烷基苯磺酸钠(SDBS)和十四烷基三甲基溴化铵(TTAB)三种不同类型的表面活性剂在重水溶液中的胶束形状转变, 发现它们在临界胶束浓度以上的各自相应浓度都有胶束形状的变化(由球状转变为椭球状或棒状). 在常温常压和没有其他添加剂的情况下, 表面活性剂溶液浓度高于其临界胶束浓度时, 球状胶束开始形成. 核磁共振一维氢谱和自扩散实验的结果显示, 当溶液浓度继续增加到一定程度时, 溶液中表面活性剂分子的化学位移和自扩散系数的变化速率都有明显的转折, 这说明溶液中球状胶束开始发生转变. 进一步通过仔细分析对比核磁共振一维氢谱中各基团谱峰, 发现表面活性剂胶束亲水表面上的质子的化学位移变化速率要远高于其疏水内核中的质子, 据此推测胶束形状很可能由球状转变为椭球状或棒状.  相似文献   

4.
本文通过荧光光谱法、紫外-可见吸收光谱法和透射电镜并结合电导率测定分别研究了水中卵清蛋白与阴离子表面活性剂十二烷基硫酸钠(SDS)和阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB)之间的相互作用。研究结果表明卵清蛋白可以增加SDS和CTAB的临界胶束浓度,但对DTAB的临界胶束浓度没有影响。阴离子表面活性剂可以使卵清蛋白构象完全伸展,而阳离子表面活性剂却不具备此种作用。表面活性剂单体与卵清蛋白的相互作用强于表面活性剂胶束与卵清蛋白的相互作用。  相似文献   

5.
分别以2种阴离子表面活性剂(SDS、SDBS)、3种季铵盐阳离子表面活性剂(CTAB、TTAB、DTAB)和2种季铵盐型双子表面活性剂(12-3-12、12-4-12)修饰碳糊电极。通过原子力显微镜、接触角以及分析物在电极表面的电化学行为探讨了不同表面活性剂在电极表面的吸附情况,推测在浓度大于临界胶束浓度(CMC)时,季铵盐型阳离子表面活性剂CTAB、TTAB、12-3-12和12-4-12在碳糊电极表面形成了圆柱形的表面胶团,而DTAB和SDS可能是饱和单分子层吸附。以BPA为分析物,研究了表面活性剂修饰电极对BPA的电化学增敏机理,结果表明修饰电极对双酚A(BPA)的电化学增敏作用主要是因为表面胶团对BPA的增溶作用,表面活性剂和BPA间的阳离子-π作用是表面胶团增溶BPA的主要原因。  相似文献   

6.
To study the influence of the head group in the properties of the mixed monolayers adsorbed at the air-water interface, the surface tension and surface potential of binary mixtures of surfactant have been determined as a function of the surfactant composition. Experiments were carried out with anionic-zwitterionic sodium dodecyl sulfate and dodecyl dimethyl ammoniopropane sulfonate (SDS/DDPS), and cationic-zwitterionic dodecyl trimethylammonium bromide and dodecyl dimethyl ammoniopropane sulfonate (DTAB/DDPS), and dodecyl trimethylammonium bromide and tetradecyl dimethyl ammoniopropane sulfonate (DTAB/TDPS). It was shown that mixed monolayers of cationic-zwitterionic surfactant exhibit small negative deviations of ideal behavior, whereas for SDS/DDPS monolayers show strong negative deviation from the ideality. Deviations of ideal behavior are interpreted by regular solution theory. The surface potential values agree very well with the concentration of the ionic component at the interface. The dynamic surface tension values show that the adsorption kinetics on the interface is a diffusion-controlled process. In monolayers with significant deviation of the ideal behavior, anionic-zwitterionic, there is some evidence of intermolecular attractions after diffusion of both surfactants at the interface.  相似文献   

7.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

8.
Thin-layer chromatography (TLC) of three cationic surfactants was performed on silica TLC plates with various solvent systems. The mutual separation of cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium bromide (DTAB) was achieved on silica TLC plates with ethanol: 1% aqueous ammonium chloride (4:6, v/v) as an eluent. Effects of cations and anions in the mobile phase on mobility and separation of CPC, TTAB and DTAB were examined. The interference due to the presence of metal cations as impurities on the resolution in the mixture of CPC, TTAB and DTAB was also examined. The limits of detection of CPC, TTAB and DTAB estimated were 0.015, 0.031 and 0.062 μg zone−1, respectively. The developed method was utilized to identify these surfactants in different spiked water samples after their preliminary separation.  相似文献   

9.
Isothermal titration calorimetry (ITC), surface tensiometry, and ultrasonic velocimetry were used to characterize surfactant-maltodextrin interactions in buffer solutions (pH 7.0, 10 mM NaCl, 20 mM Trizma base, 30.0 degrees C). Experiments were carried out using three surfactants with similar nonpolar tail groups (C12) but different charged headgroups: anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), and nonionic (polyoxyethylene 23 lauryl ether, Brij35). All three surfactants bound to maltodextrin, with the binding characteristics depending on whether the surfactant headgroup was ionic or nonionic. The amounts of surfactant bound to 0.5% w/v maltodextrin (DE 5) at saturation were < 0.3 mM Brij35, approximately 1-1.6 mM SDS, and approximately 1.5 mM DTAB. ITC measurements indicated that surfactant binding to maltodextrin was exothermic. Surface tension measurements indicated that the DTAB-maltodextrin complex was more surface active than DTAB alone but that SDS- and Brij35- maltodextrin complexes were less surface active than the surfactants alone.  相似文献   

10.
The critical aggregation concentration (CAC) of four with three kinds of conventional surfactants, namely, two cationic surfactants [hexadecyltrimethyl ammonium bromide (CTAB) and tetradecyltrimethyl ammonium bromide (TTAB)], one anionic surfactant [sodium dodecyl sulfate (SDS)], and a nonionic surfactant [Triton X-100 (TX-100)], were determined by variation of 1H chemical shifts with surfactant concentrations. Results show that the CAC values of protons at different positions of the same molecule are different, and those of the terminal methyl protons are the lowest, respectively, which suggests that the terminal groups of the alkyl chains aggregates first during micellization. Measurement of the transverse relaxation time (T2) of different protons in SDS also show that the terminal methyl protons start to decrease with the increase in concentration first, which supports the above mentioned tendency.  相似文献   

11.
A comparative study of the influence of anionic (sodium dodecyl sulfate, SDS), cationic (tetradecyltrimethylammonium bromide, TTAB) and non-ionic (penta-ethyleneglycol mono n-dodecyl ether, C12E5) surfactants on the structure and composition of adsorbed layers of cationic hydrophobically modified hydroxyethylcellulose (Quatrisoft LM 200) on hydrophilic surfaces (mica and silica) was carried out using surface force apparatus andin situ null ellipsometry. It is shown that a complex interplay of electrostatic, hydrophobic, and steric effect govern polymer/surfactant/surface interactions and that the effect of surfactant addition strongly depends on its nature and concentration.Both anionic and non-ionic surfactants exhibit aggregation on the polymer hydrophobes. SDS has the most profound influence on Quatrisoft interfacial behavior due to the changes in electrostatics accompanying formation of the polymer/surfactant complex. In the case of C12E5, large surfactant clusters bound to the polymer affect the macromolecules' conformation in the adsorbed layer via steric effects. In contrast to SDS and C12E5, no evidence of interaction between the polycation and a like-charged surfactant, TTAB, was obtained. At the same time, TTAB adsorbs on the surface in competition with the polyelectrolyte. This results in partial displacement of the latter and its looser attachment to the surface.  相似文献   

12.
The alkaline hydrolysis of curcumin was studied in three types of micelles composed of the cationic surfactants cetyl trimethylammonium bromide (CTAB) and dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS). At pH 13, curcumin undergoes rapid degradation by alkaline hydrolysis in the SDS micellar solution. In contrast, alkaline hydrolysis of curcumin is greatly suppressed in the presence of either CTAB or DTAB micelles, with a yield of suppression close to 90%. The results from fluorescence spectroscopic studies reveal that while curcumin remains encapsulated in CTAB and DTAB micelles at pH 13, curcumin is dissociated from the SDS micelles to the aqueous phase at this pH. The absence of encapsulation and stabilization in the SDS micellar solution results in rapid hydrolysis of curcumin.  相似文献   

13.
Mixed micellization behavior of dimeric cationic surfactant ethanediyl-1,2-bis (dimethyldodecylammonium bromide) (12-2-12) with a series of monomeric cationic surfactants dodecyltrimethyl ammonium bromide (DTAB), tetradecyltrimethyl ammonium bromide (TTAB), and cetyltrimethyl ammonium bromide (CTAB) has been studied in aqueous and aqueous polyvinylpyrrolidone (PVP) solutions at 298.15, 308.15, and 318.15 K, respectively, using conductometric method. Various thermodynamic parameters like mixed micelle concentration (Cm), micelle mole fraction (X1), interaction parameter (β), and free energy of mixing (ΔGex) of the mixed systems have been determined and analyzed using Rubingh's regular solution theory. The results indicate that in aqueous solutions the binary mixtures of 12-2-12 with DTAB/TTAB behave nonideally with mutual synergism whereas that with CTAB shows almost ideal behavior at 298.15 K. At 318.15 K, all these binary mixtures exhibit antagonistic behavior. The effect of variation in chain length of alkyltrimethyl ammonium bromide surfactants on the interactions with 12-2-12 have also been evaluated and discussed.  相似文献   

14.
It was investigated whether interferences from surfactants in anodic stripping voltammetry (ASV) could be remedied by the anionic surfactant sodium dodecyl sulfate (SDS) which causes little or no interference in itself. Cadmium and lead were used as test analytes, and measurements were performed in acetate buffer as well as in 0.1 M HNO3. One hundred parts per million of the interfering surfactant was added. SDS eliminated severe interference from the non-ionic surfactants Triton© X-100 and dodecyl octaethylene glycol ether as well as from the polymer polyethylene glycol 6000 and from the cationic surfactant cetyl trimethyl ammonium bromide. SDS could not remedy the extraordinarily severe interference from the cationic surfactant cetyl pyridinium chloride. Two anionic surfactants were also tested as interferents but they had little detrimental effect on the ASV signals. The effect of SDS was explained by the formation of mixed micelles which scavenge the interferent in the bulk solution and by competitive displacement of the interferent at the electrode surface.  相似文献   

15.
Steady-state and time-resolved fluorometric techniques have been exploited to study the photophysical and distribution behavior of an efficient cancer cell photosensitizer, norharmane (NHM), in well-characterized, biomimicking nanocavities formed by cationic micelles with varying surfactant chain length. Amphiphiles like dodecyl trimethyl ammonium bromide (DTAB), tetradecyl trimethyl ammonium bromide (TTAB), and cetyl trimethyl ammonium bromide (CTAB) have been used for the purpose. Emission behavior of NHM is very much dependent on the surfactant concentration as well as their hydrophobic chain length. The binding constant (K) and free-energy change (DeltaG) for the interaction of NHM with the cationic micelles have been determined from the fluorescence data. Polarity of the microenvironment around the probe has been determined in the cationic micellar environments from a comparison of the variation of fluorescence properties of the two-prototropic species of the probe in water/dioxane mixture with varying composition. Experimental results demonstrate that the variation in the cationic surfactant chain length plays an important role in promoting a specific prototropic form of the probe molecule. Fluorescence decays are biexponential in all the micelles indicating that the probe molecules are distributed between the two distinct regions of the micelles. The population of the component with a longer lifetime corresponds to the probe in the head group site, while the short-lived component comes from the probe bound to the core region of the micelles. On the basis of the lifetime measurements, the partitioning behavior of the chromophore in the head group and in the core regions in the micelles has been determined.  相似文献   

16.
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.  相似文献   

17.
Adsorption of ionic surfactants on titanium dioxide with dodecyl chain groups or quaternary ammonium groups (XNm, where m is the carbon number of the alkyl chain, 4–16) was investigated. The adsorbed amount of cationic surfactants (dodecyltrimethylammonium bromide, DTAB; 1,2-bis(dodecyldimethylammonio)ethane dibromide, 2RenQ) on titanium dioxide with dodecyl chain groups increased with increasing concentration of the dodecyl chain due to hydrophobic interaction, where the adsorbed amounts of DTAB at saturation was considerably greater than those of 2RenQ. Adsorption of an anionic surfactant (sodium dodecyl sulfate, SDS) on XNm occurred mainly due to both electrostatic attraction force and hydrophobic interaction, depending on the alkyl chain length on XNm. On the other hand, adsorption of cationic surfactants, DTAC and 2RenQCl (their counter ions are chloride ions), on XNm was quite smaller compared with that of SDS due to electrostatic repulsion force. Adsolubilization of 2-naphthol in the surfactant-adsorbed layer on the titanium dioxides with the functional groups was also studied. The adsolubilized amounts of 2-naphthol on titanium dioxide with dodecyl chain groups were enhanced by adsorption of DTAB, but no distinct increase in the adsolubilization was observed by adsorption of 2RenQ. In the case of XNm, the amount of 2-naphthol adsorbed in the absence of surfactants increased with increasing alkyl chain length on XNm. Further, an appreciable increase in the adsolubilization of 2-naphthol on XNm with adsorption of 2RenQCl was observed. It was found from the admicellar partitioning coefficients that the adsolubilization of 2-naphthol preferably occurs on XNm by adsorption of SDS or 2RenQCl compared with that by DTAC. These differences in the adsolubilization were discussed by microproperties of the surfactant-adsorbed layers estimated using a spin probe.  相似文献   

18.
Three alkyltrimethylammonium bromides (i.e., dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromide or DTAB, TTAB, and CTAB, respectively) were used to remove a blue solvent-based ink from a printed surface of high-density polyethylene bottles. Either an increase in the alkyl chain length or the surfactant concentration was found to increase the deinking efficiency. Complete deinking was achieved at concentrations about 3, 8, and 24 times of the critical micelle concentration (CMC) of CTAB, TTAB, and DTAB, respectively. For CTAB, ink removal started at a concentration close to or less than its CMC and increased appreciably at concentrations greater than its CMC, while for TTAB and DTAB, significant deinking was only achieved at concentrations much greater than their CMCs. Corresponding to the deinking efficiency of CTAB in the CMC region, the zeta potential of ink particles was found to increase with increasing alkyl chain length and concentration of the surfactants, which later leveled off at some higher concentrations. Wettability of the surfactants on an ink surface increased with increasing alkyl chain length and concentration of the surfactants. Lastly, solubilization of ink binder in the surfactant micelles was found to increase with increasing alkyl chain length and surfactant concentration. We conclude that adsorption of surfactant on the ink pigment is crucial to deinking due to modification of wettability, zeta potential, pigment/water interfacial tension, and dispersion stability. Solubilization of binder (epoxy) into micelles is necessary for good deinking because the dissolution of the binder is required before the pigment particles can be released from the polymer surface.  相似文献   

19.
The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.  相似文献   

20.
The interaction between cationic surfactants (hexadecyl and dodecyl trimethyl ammonium bromide) and gelatin was characterized by measuring the circular dichroism. The interaction between the cationic surfactants and gelatin is weak in comparison to that of anionic surfactants. When the concentration of cationic surfactants is sufficiently low, refolding of the gelatin-strands to the triple helical structure by rechilling the solution from 298 K to 283 K is complete. The triple helical content of the solution is affected more strongly by the cationic surfactants in acidic solution than at pHs 7 or 10. The interaction depends on the apolar group of the surfactant and is found to be stronger for DTAB than for CTAB at 298 K. Coagulation of the hydrophobic gelatin-cationic surfactant complexes does not comprise that pan of gelatin which is able to refold the triple helical structure. Therefore, the gelatin-strands of lower molecular weights are thought to react favorably with the surfactant ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号