首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of anionic polyelectrolytes, sodium salts of carboxymethyl celluloses (CMCs) with different degrees of substitution (DS = 0.9 and 1.2), from aqueous electrolyte solutions onto regenerated cellulose surfaces was studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) experiments. The influence of both calcium chloride (CaCl(2)) and sodium chloride (NaCl) on CMC adsorption was examined. The QCM-D results demonstrated that CaCl(2) (divalent cation) caused significantly greater CMC adsorption onto regenerated cellulose surfaces than NaCl (monovalent cation) at the same ionic strength. The CMC layers adsorbed onto regenerated cellulose surfaces from CaCl(2) solutions exhibited greater stability upon exposure to flowing water than layers adsorbed from NaCl solutions. Both QCM-D and SPR results showed that CMC adsorption onto regenerated cellulose surfaces from CaCl(2) solutions increased with increasing CaCl(2) concentration up to the solubility limit (10 mM). Voigt-based viscoelastic modeling of the QCM-D data indicated that the CMC layers adsorbed onto regenerated cellulose surfaces had shear viscosities of η(f) ≈ 10(-3) N·s·m(-2) and elastic shear moduli of μ(f) ≈ 10(5) N·m(-2). Furthermore, the combination of SPR spectroscopy and QCM-D showed that the CMC layers contained 90-95% water. Adsorption isotherms for CMCs in CaCl(2) solutions were also obtained from QCM-D and were fit by Freundlich isotherms. This study demonstrated that CMC adsorption from CaCl(2) solutions is useful for the modification of cellulose surfaces.  相似文献   

2.
Three series of copolymers were prepared from 4-[2-(S)-methyl-3-acryloxy)-4′-methoxy phenyl] benzoate, as the common chiral monomer, and three nonchiral 4-alkyloxy phenyl-4′-(6-acryloxy hexyloxy) benzoates with alkyloxy tail groups containing seven to nine atoms. All of the copolymers exhibited liquid crystalline (LC) behavior over the entire composition ranges studied. It was demonstrated that by changing the length of the alkyloxy unit, significant differences could be induced in the LC phases observed. When the alkyloxy unit was seven atoms long only chiral nematic (N*) phases were detected, whereas lengthening the alkyloxy unit to eight and nine atoms led to the formation of smectic A (SA) and chiral smectic C (S*C ) phases in addition to the N* phase. Films of these materials exhibited selective reflection in the visible region as one would expect from the presence of N* and S*C phases. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
CaCO3 crystallization on a chitosan membrane was studied using diffusion of (NH4)2CO3 vapors into a CaCl2 solution containing differing added amounts of two polyacrylic acids (PAAs) with molecular weights of ca. 2.0 x 10(3) and ca. 4.5 x 10(4). The coexistence of PAA and the chitosan membranes produced thin CaCO3 island crystals, which developed into a continuous CaCO3 film on the membranes. Continuous CaCO3 films consisting of only aragonite formed on the chitosan membranes at the optimum amount of PAA. When the amount of PAA is not optimum, the polymorph of CaCO3 switches from aragonite to vaterite, and the morphology has a tendency to become an isolated island structure. The formation of the aragonite and vaterite island crystals and the appearance of a range of added PAA suitable for their formation are explained by the action of two parallel phenomena: (a) the high concentration of Ca2+ ions in the chitosan membrane vicinity is achieved by the interaction between the -COO- groups of PAA adsorbed by the -NH3+ groups of the chitosan membrane through an electrostatic force and free Ca2+ ions in the CaCl2 solution, which produces the high supersaturation with CaCO3 in the membrane vicinity during CO2 diffusion; (b) PAA, remaining as mobile carboxylic anions in the CaCO3 solution, inhibits the growth of the CaCO3 island crystals by its adsorption. The CaCO3 supersaturation in the membrane vicinity is controlled by regulating the balance of these phenomena, which leads to the formation of the desired CaCO3 polymorph.  相似文献   

4.
A density functional theory study of small base molecules and tetrahedral and cubane-like group V clusters encapsulated in B(80) shows that the boron buckyball is a hard acid and prefers hard bases like NH(3) or N(2)H(4) to form stable off-centered complexes. In contrast, tetrahedral and cubane-like clusters of this family are metastable in the cage. The most favorable clusters are the mixed tetrahedral and cubane clusters formed by nitrogen and phosphorus atoms such as P(2)N(2)@B(80), P(3)N@B(80), and P(4)N(4)@B(80). The boron cap atoms are electrophilic centers, and prefer mainly to react with electron rich nucleophilic sites. The stability of the complexes will be governed by the size and electron donating character of the encapsulated clusters. B(80) forms stable complexes with hard materials where a bidentate interaction of the encapsulated molecule with two boron cap atoms is preferred over a single direct complex toward a single endohedral boron.  相似文献   

5.
Novel fast-swelling porous guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite (GG-g-P(NaA-co-St)/APT) superabsorbent hydrogels were prepared by simultaneous free-radical graft copolymerization reaction of guar gum (GG), partially neutralized AA (NaA), styrene (St) and attapulgite (APT) using N,N'-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution and the surfactant self-assembling templating pore-forming technique. Fourier transform infrared (FTIR) spectroscopy confirmed that the surfactant could be removed from the final hydrogel product by methanol/water (8:1, v/v) washing process and the surfactant only act as micelle template to form pores. The effect of surfactant type on the porous microstructure of the hydrogel was assessed by field emission scanning electron microscope (FESEM). It was shown that incorporation of proper amount of anionic surfactant sodium n-dodecyl sulfate (SDS) in the gelling process of the hydrogel can obviously enhance the swelling capacity and initial swelling rate. The salt-sensitivity of the SDS-added hydrogel in distilled water and 15 mmol/L NaCl, CaCl(2) solution or 15 mmol/L NaCl and CaCl(2) solution was investigated, and it was found that the swelling-deswelling capability is quite reversible. A similar reproducible on-off switching behavior was observed in the 1 mmol/L solution of phosphate buffer at pH 2.1 and 7.4.  相似文献   

6.
Small aluminum oxide cluster cations and anions, produced by laser vaporization, were investigated regarding their reactivity toward CO and N2O employing guided-ion-beam mass spectrometry. Clusters with the same stoichiometry as bulk alumina, Al2O3, exhibited atomic oxygen transfer products when reacted with CO, suggesting the formation of CO2. Anionic clusters were less reactive than cations but showed higher selectivity towards the transfer of only a single oxygen atom. Cationic clusters, in contrast, exhibited additional products corresponding to the sequential transfer of two oxygen atoms and the loss of an aluminum atom. To determine if these stoichiometric clusters could be generated from oxygen-deficient species, clusters having a stoichiometry with one less oxygen atom than bulk alumina, Al2O2, were reacted with N2O. Cationic clusters were found to be selectively oxidized to Al2O3(+), while anionic clusters added both one and two oxygen atoms forming Al2O3(-) and Al2O4(-). The oxygen-rich Al2O4(-) cluster exhibited comparable reactivity to Al2O3(-) when reacted with CO.  相似文献   

7.
Micron size and food grade pristine CaCO(3) particles were used to stabilize an oil in water Pickering emulsion. The particles also acted as nucleation sites for the subsequent crystallization of CaCO(3) with the addition of CaCl(2) and CO(2) gas as precursors. After the controllable crystallization process, a dense CaCO(3) shell with a few microns in thickness was formed. The CaCO(3) shell was proven to be calcite without the presence of crystallization modifiers. The crystallization speed and the shell integrity were controlled by manipulating the addition of CaCl(2) amount during the different crystallization stages; therefore, the homogeneous nucleation in the bulk was almost inhibited, and the heterogeneous nucleation at the oil-water interface on pristine CaCO(3) particles was the main contribution to the growth of the shell. The encapsulated limonene flavor in CaCO(3) capsules showed a prolonged release in neutral water at 85°C, while a burst release at pH 2 water as expected. The method is a simple and scalable process for creating inorganic core-shell capsules and can be used for producing food grade capsules for controlling the flavor release or masking undesirable taste in mouth.  相似文献   

8.
孔雀石绿分子印迹膜的制备和渗透性   总被引:1,自引:1,他引:0  
以0.45 μm混合纤维素酯微孔膜为支载膜,丙烯酰胺为功能单体,N, N'-亚甲基双丙烯酰胺为交联剂,通过原位聚合法制备得到孔雀石绿分子印迹膜,并研究了其对模板分子和类似物的渗透性能。以分子印迹膜作为渗透膜,单一渗透实验中,13 h后MG的渗透量达到0.118×10-3 g/cm2,而相同时间内甲基紫、甲酚红和溴百里酚蓝的渗透量分别为0.064×10-3、0.057×10-3和0.044×10-3 g/cm2,且在竞争渗透中孔雀石绿的渗透速率没有发生明显变化,而甲基紫的渗透速率却显著下降。实验表明,分子印迹膜对模板分子孔雀石绿表现出良好的渗透选择性,且在与类似物甲基紫的竞争渗透中具有优先渗透能力。  相似文献   

9.
Yellow SrTiO3 powders codoped with nitrogen and lanthanum (STO:N,La) were studied as visible light photocatalysts. The crystal phase of STO:N,La exhibited a pure perovskite phase, and O and Sr sites atoms were substitutionally doped with N and La atoms, respectively. The first principle calculation of STO:N,La indicated that the edge of the N(2p) band is situated above the valence band, which consisted of O(2p) orbitals, and the La orbitals did not exist in the band gap of SrTiO3. STO:N,La exhibited a higher oxidation activity of gaseous 2-propanol under vis illumination than SrTiO3 doped only with nitrogen (STO:N). The high activity of STO:N,La was due to the decrease in the oxygen vacancies, which acted as electron-hole recombination centers, because codoping with La3+ and N3- ions maintained the charge balance. The optimum doping density of N and La for visible light activity was 0.5%, and STO:N,La(0.5%) had an activity under UV illumination similar to pure SrTiO3.  相似文献   

10.
The spectrophotometric titration of cobalt(II) with CaCl2 was carried out in mixed solvents of 2-propanol and water at different solvent compositions of 2-propannol, water and CaCl2 to analyze the salting-out extraction mechanism of Co(II) by the addition of CaCl2 from the mixed solvents. The formation constants of betaCoCl4(2-) = [CoCl4(2-)][Co2+](-1)[Cl-](-4) in both the organic and aqueous phases were determined thorough non-linear regression of the spectrophotometric titration data by a computer program SPECFIT/32. The values of log betaCoCl4(2-) in the aqueous phases were -4.26 +/- 0.03, -4.03 +/- 0.07, -3.83 +/- 0.04, -3.69 +/- 0.03 and -3.46 +/- 0.01 at mole fractions of 2-propanol of 0.026, 0.023, 0.017, 0.014 and 0.012, respectively, and at [CaCl2]/mol dm(-3) values of 3.555 (I = 10.6), 4.276 (I = 12.8), 4.916 (I = 14.7) and 5.444 (I = 16.3), respectively. The formation constants of [CoCl4(2-)] in the organic phase were 5.70 +/- 0.06, 5.44 +/- 0.03, 5.36 +/- 0.06, 5.10 +/- 0.04 and 4.84 +/- 0.05 at mole fractions of water of 0.431, 0.441, 0.444, 0.447 and 0.451, respectively, and at [CaCl2]/mol dm(-3) of 0.941 (I = 2.8), 0.943 (I = 2.8), 1.013 (I = 3.0), 1.090 (I = 3.3) and 1.165 (I = 3.5), respectively. These results suggest the formation of [CoCl4(2-)] of 23-90% in the aqueous phase at the above mole fractions and the quantitative formation of [CoCl4(2-)] in the organic phase. The extraction percentage of [CoCl4(2-)] increased with an increase in [CaCl2]. The distribution constant, KD (= [CoCl4(2-)]org/[CoCl4(2-)]aq), however, decreased and became constant with [CaCl2]. The detailed extraction mechanism of Co(II) is discussed.  相似文献   

11.
Nanometer-scale arrays of conducting polymers were prepared on scaffolds of self-assembling DNA modules. A series of DNA oligomers was prepared, each containing six 2,5-bis(2-thienyl)pyrrole (SNS) monomer units linked covalently to N4 atoms of alternating cytosines placed between leading and trailing 12-nucleobase recognition sequences. These DNA modules were encoded so the recognition sequences would uniquely associate through Watson-Crick assembly to form closed-cycle or linear arrays of aligned SNS monomers. The melting behavior and electrophoretic migration of these assemblies showed cooperative formation of multicomponent arrays containing two to five DNA modules (i.e., 12-30 SNS monomers). The treatment of these arrays with horseradish peroxidase and H(2)O(2) resulted in oxidative polymerization of the SNS monomers with concomitant ligation of the DNA modules. The resulting cyclic and linear arrays exhibited chemical and optical properties typical of conducting thiophene-like polymers, with a red-end absorption beyond 1250 nm. AFM images of the cyclic array containing 18 SNS units revealed highly regular 10 nm diameter objects.  相似文献   

12.
Liposome-templated supramolecular assembly of responsive alginate nanogels   总被引:1,自引:0,他引:1  
Nanosized gel particles (nanogels) are of interest for a variety of applications, including drug delivery and single-molecule encapsulation. Here, we employ the cores of nanoscale liposomes as reaction vessels to template the assembly of calcium alginate nanogels. For our experiments, a liposome formulation with a high bilayer melting temperature (Tm) is selected, and sodium alginate is encapsulated in the liposomal core. The liposomes are then placed in an aqueous buffer containing calcium chloride, and the temperature is raised up to Tm. This allows permeation of Ca2+ ions through the bilayer and into the core, whereupon these ions gel the encapsulated alginate. Subsequently, the lipid bilayer covering the gelled core is removed by the addition of a detergent. The resulting alginate nanogels have a size distribution consistent with that of the template liposomes (ca. 120-200 nm), as confirmed by transmission electron microscopy and light scattering. Nanogels of different average sizes can be synthesized by varying the template dimensions, and the gel size can be further tuned after synthesis by the addition of monovalent salt to the solution.  相似文献   

13.
In the synthesis of peptidomimetics containing alpha-hydroxy-beta-amino acid, the coupling of this N(beta)-protected beta-amino acid with amine components was generally performed without the protection of its alpha-hydroxyl group. However, the formation of dipeptides in low yield was often observed when sterically hindered amine components were used. Boc-Apns-OH [Apns: (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid, allophenylnorstatine] (6), which is one of such beta-amino acid derivatives, is intensively employed as a core structure in the development of HIV-1 protease inhibitors. There have been no precise studies, to date, that have examined amide bond formation with alpha-hydroxy-beta-amino acid derivatives as an acyl component. To determine the cause of this low-yield reaction, we studied the amide bond formation focusing on the activation step of N(beta)-protected alpha-hydroxy-beta-amino acid by using a model coupling reaction between 6 and H-Dmt-OR [Dmt: (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid] (7). A significant amount of homobislactone 9 was formed through the activation of the carboxyl group of 6 to the benzotriazole-type active esters such as OBt and OAt. In addition, this homobislactone formation was markedly increased in the presence of a catalytic amount of a base, which exhibited good correlation with the low yield of the amide bond formation, suggesting that homobislactone formation is one major reason for the low yield of the amide bond formation. Moreover, homobislactones were also formed in other derivatives of the N(beta)-protected alpha-hydroxy-beta-amino acid, suggesting a common feature of this type of amino acids. The use of a strong activation method like EDC--HOAt without base addition enhanced amide bond formation, although a small amount of homobislactone may be formed during the coupling reaction.  相似文献   

14.
Poly(toluidine blue) nanowires (PTBNWs) with an average diameter of ca. 200 nm and length of ca. 5 μm were synthesized for the first time using a template‐directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template. Their morphological characterization was carried out by scanning electron microscopy (SEM) and transmission electron microscope (TEM). By electrochemical polymerization, horseradish peroxidase (HRP) was encapsulated in situ in PTBNWs (denoted as PTBNWs‐HRP) for potential biosensor applications. PTBNWs‐HRP was then modified on a glassy carbon (GC) electrode. In the system obtained, the PTBNWs served as an excellent redox mediator and exhibited high efficiency of electron transfer between the HRP and the GC electrode for the reduction of H2O2. The proposed electrode can be used as an excellent amperometric sensor for H2O2 at ?0.1 V with a linear response range covering from 1 μM to 28 mM, a detection limit of 1 μM (based on S/N=3) and a fast response time of less than 8 s.  相似文献   

15.
The factors that influence the hydrothermal synthesis of MCM-41 were investigated, and it was found that compared with those from high H2O/SiO2 systems(designated MCM-41-A), the products from low H2O/SiO2 systems(designated MCM-41-B) exhibited a less-defined X-ray powder diffraction (XRD) pattern with a broader main reflection peak at a lower 2θ diffraction angle. MCM-41-B possesses a smaller surface area but a larger pore size than MCM-41-A. New routes including direct thermal treatment, room-temperature crystallization and microwave heating were developed for the formation of MCM-41, and the properties of the products prepared from these new routes were compared with those of the MCM-41 hydrothermally synthesized. The pore sizes of MCM-41 materials are uniformly distributed with an effective pore diameter that falls into the range of 2-4 nm, where as the products from wet-gel thermal treatment possess two kinds of mesopores:the well-defined smaller pores distributed at 3 nm and the larger one within 8-20 nm. The MAS NMR spectroscopy revealed that after calcination to remove the organic template in Al-containing MCM-41, a small part of the tetrahedrally-coordinated framework aluminum atoms became octahedrally-coordinated and a considerable amount of Si-OH species were generated.  相似文献   

16.
张旭光  马云飞 《合成化学》2017,25(10):844-846
以硝酸铝为铝源,十六烷基三甲基溴化铵和尿素为复合模板剂,采用溶胶-凝胶法制备了介孔氧化铝(1),其结构经TEM, XRD, TG-DTA和N2-BET表征。结果表明:1比表面积较大(>400 m2·g-1),孔径分布窄(3~5 nm),形成的蠕虫状孔道具有短程有序性。  相似文献   

17.
In order to investigate the catalytic activity of high temperature treated CoPc toward oxygen reduction, and find the active site of the catalyst, using cobalt (Ⅱ) phthalocyanine (CoPc) as raw material, through thermal chemical vapor deposition method at 850℃ under a current of Ar/H2, two layer well-aligned multiwalled carbon nanotubes (CNTs) were made. The diameters of the well-aligned carbon nanotubes were distributed in the range of 60~120 nm and the length was about 40 μm. The Co particle with 10 nm in diameter was encapsulated in the CNTs compartment. The products were observed by field emission scanning electron microscope (SEM), and transmission electron microscope (TEM). The well-aligned carbon nanotubes were characteriszed by Raman scattering spectrum and X-ray diffraction (XRD). The cyclic voltammetric measurement demonstrates that the CNTs have some effect to prevent the metal nanoparticle encapsulated from eroding rapidly. It is assumed that the small amount of the N element in the CNTs is very necessary for the bamboo-like morphology and the protected action for metal particles against dissolution in the acid medium. The radian of the winding wall should be affected by the amount of the N and the interaction between the N in the carbon network and the metal cluster. In addition, the CNTs greater electrochemically active surface area is a great advantage for any electrocatalytic application.  相似文献   

18.
Extended coordination frameworks containing the pyrimidin-4-olate ligand (4-pymo) and Zn(II) and Ni(II) metal ions have been obtained by solid state reactions and have been fully characterized by spectroscopic, thermal, and magnetic measurements and by ab initio XRPD. The reaction of ZnO and 4-Hpymo at 140 degrees C gives a solid microcrystalline phase, Zn(4-pymo)(2) (1). Its 3D framework contains Zn(II) centers linked by 4-pymo ligands acting in two different coordination modes, namely, the N,N'- and the N,O-exo-bidentate ones, which result in a pseudotetrahedral ZnN(3)O chromophore. Thermal treatment of the "molecular" Ni(4-pymo)(2)(H(2)O)(4) complex (2) above 140 degrees C gives an anhydrous amorphous material analyzing as Ni(4-pymo)(2) (3a). Further heating of this material above 388 degrees C results in the formation of the microcrystalline layered Ni(4-pymo)(2) species (3b), in which Ni(II) centers are bridged by N,O-exo-bidentate 4-pymo ligands (assisted by longer Ni.N contacts). The thermal dependence of the magnetic susceptibility has been studied for the paramagnetic species 2 and 3a. 2 shows a weak antiferromagnetic interaction [J = -0.313(5) cm(-)(1)] transmitted through the multiple H-bonding interactions between the exocyclic pyrimidine and water oxygen atoms coordinated to the metal centers. 3a behaves as a 2D Heisenberg antiferromagnet with J = -4.11(3) cm(-)(1).  相似文献   

19.
The reaction of N6,N9-dimethyladenine (N6,N9-Me2Ade, 1) with methyllithium in aprotic solvents such as tetrahydrofuran and pyridine resulted in the formation of the lithiated adenine [Li(N6,N9-Me2Ade-H)] (2) that was isolated as highly air and moisture sensitive tetrahydrofuran (2.(1/4)THF) and pyridine (2.py) adducts in excellent yields (>90%). The identities of 2.(1/4)THF and 2.py were confirmed by 1H and 13C NMR spectroscopy. In crystals of 2.(3/2)py, the dimethyladeninato ligand exhibited a chelating and bridging coordination mode (kappa2N6,N7:kappaN3) resulting in a 1-D polymeric chain-like structure in which the tetrahedral coordination sphere of the lithium atoms was completed by a pyridine molecule. Reactions of 2.(1/4)THF with electrophiles such as MeI, Me3SiCl, and Me3SnCl resulted in high yields (88-98%) of the formation of the adenine deriatives N6,N6,N9-Me3Ade-H (3), N6-(SiMe3)-N6,N9-Me2Ade(-H) (4), and N6-(SnMe3)-N6,N9-Me2Ade-H (5), respectively. Compounds 3-5 were characterized by 1H, 13C, 29Si (4), and 119Sn (5) NMR spectroscopy and MS investigations, and the stannylated derivative 5 also was characterized by single-crystal diffraction analysis exhibiting a mononuclear structure. The reaction of the stannylated adenine 5 with n-BuLi in n-hexane proceeded in the sense of a tin-lithium transmetalation reaction yielding the solvent-free lithium adeninate [Li(N6,N9-Me2Ade-H)] (2) in 90% yield.  相似文献   

20.
Monodisperse, molecularly imprinted nanospheres were synthesized by nonaqueous (mini)emulsion polymerization using a standard monomer mixture of methacrylic acid and ethylene dimethacrylate containing the drug propranolol as a template. The preparation conditions (solvent, amount of surfactant, and amount of employed template) were extensively varied in order to assess their effect on the properties of the resulting polymer nanoparticles. The molecular recognition capability of the nanospheres was evaluated in batch rebinding experiments, and the effect of the nanosphere preparation conditions as well as of the reaction conditions was investigated. In this way, optimal preparation protocols for molecularly imprinted nanoparticles under nonaqueous conditions with the use of a nonionic emulsifier were identified, which lead to nanospheres with a diameter of around 100 nm having an enhanced capacity of specific template rebinding compared to both nonimprinted nanospheres and to particles obtained by emulsion polymerization in water. Best results were obtained with nanospheres prepared in N,N‐dimethylformamide/n‐hexane with a high functional monomer to template ratio. The enantioselectivity of the rebinding process was also demonstrated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号