首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-phase ESR technique has been used to study the xenon-photosensitization of hydrogen. The ESR spectrum of atomic hydrogen was observed when the mixtures of xenon and hydrogen were irradiated by the xenon resonance line (147 nm). The results show that photosensitized decomposition of hydrogen takes place due to the chemical quenching of the excited xenon by hydrogen molecules.  相似文献   

2.
The kinetics of the decomposition of hydrogen peroxide was studied in aqueous medium in the temperature range 25–40°C in the presence of Wofatit KPS-resin in the form of Cu(II)-ammine complex ions. The rate constant was deduced at various degrees of resin cross-linkage and different concentrations of hydrogen peroxide. The order of the decomposition reaction varied from first order to half order, i.e., the order of the reaction decreased with increasing the concentration of H2O2. The decomposition process was found to be a catalytic reaction which was controlled by the chemical reaction of H2O2 molecules with the active species inside the resin particles. The mechanism of the reaction can be summarized by the equation in which the subsequent reactions of the probable active complex are discussed.  相似文献   

3.
Conclusions Electron spin resonance studies using 2-methyl-2-nitrosopropane and phenyl-tert-butylnitron as spin traps have been carried out on the homolytic breakdown of ethanesulfochloride, sulfuryl chloride, sulfuryl fluorochloride and benzosulfohalides of the form PhSO2X (X=Cl, F, Br).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 550–553, March, 1977.  相似文献   

4.
Summary A method for the determination of gaseous hydrogen peroxide in ambient air is described. The cryogenic sampling technique (–45 ° C) employed represents an improvement compared with the impinger technique by diminishing artifacts which are bound to liquid phase production and decomposition, respectively. Results are given of H2O2 measurements from October 1984 to July 1985 in Dortmund (FRG), with mean concentrations of about 30 ppt (v/v). Preliminary results obtained with a coated denuder as a sampling device are also presented.
Methodik zur Bestimmung von gasförmigem Wasserstoffperoxid in Umgebungsluft
Zusammenfassung Ein Verfahren zur Bestimmung von gasförmigem Wasserstoffperoxid in Umgebungsluft wird beschrieben. Die vorgeschlagene Verwendung eines Kryo-Sammlers (–45 °C) stellt insofern eine Verbesserung gegenüber der bisher üblichen Waschflaschen-Probenahme dar, als damit die bei Absorption in flüssiger Phase beobachteten Artefakte — Bildung und auch Zersetzung von Wasserstoffperoxid — deutlich vermindert werden. Feldmessungen, die zwischen Oktober 1984 und Juli 1985 auf dem Gelände der Universität Dortmund durchgeführt wurden, ergaben mittlere H2O2-Gasphasenkonzentrationen um 30 pptv. Darüber hinaus werden die Ergebnisse erster Versuche mit beschichteten Diffusionsabscheidern als Sammler für gasförmiges Wasserstoffperoxid vorgestellt.


Dedicated to Prof. Dr. H. Monien on the occasion of his 60th birthday  相似文献   

5.
The decomposition of hydrogen peroxide (H2O2) was examined in aqueous solution (50 mM Tris-HCl buffer, pH 7.4, containing 100 mM NaCl) at 25 degrees C in pure buffer or in the presence of either vesicles or micelles formed from various phosphatidylcholines (PCs). In the absence of PCs, more than 90% of the initially added H2O2 (1.0 mM) remained intact after incubation for 120 h. The effect of the PCs on the decomposition of H2O2 was studied by using different PCs that varied in terms of number of carbon atoms in the two acyl chains n as well as in terms of the degree of unsaturation. PCs with short hydrocarbon chains (n = 4, 6-8) were dissolved in the buffer solution in the form of nonassociated monomers or as micelles in equilibrium with monomers at a fixed PC concentration of 10 mM. The presence of these short-chain PCs slightly enhanced the H2O2 decomposition rate. Micelles formed by non-lipid detergents (sodium cholate, Triton X-100, and sodium dodecylsulfate) had a similar effect. In marked contrast, PCs with long hydrocarbon chains (n > or = 10) dispersed in buffer solution as vesicles (liposomes) significantly enhanced the rate of H2O2 decomposition, with the most effective PC being 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at 25 degrees C. This indicates that the packing density of the PC molecules influences the reactivity, presumably through the direct interaction of the PC assemblies with H2O2 molecules. Furthermore, in the case of vesicles formed from PCs with unsaturated acyl chains (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC; 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC), carbon-carbon double bond oxidation did not occur extensively under the conditions used. This indicates that the observed effect of PCs on the decomposition of H2O2 is indeed related to the assembly structure (vesicle vs micelles vs monomers) and is clearly not related to the presence of unsaturated hydrocarbon chains. Fluorescence polarization measurements of two fluorescent probes embedded either in the acyl chain region of the vesicles (DPH, 1,6-diphenyl-1,3,5-hexatriene) or on the surface of the vesicles (TMA-DPH, 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene iodide) show that the presence of H2O2 leads to a decrease in the fluidity of the lipid-water surface and not to a change in the fluidity of the hydrophobic region of the vesicle bilayer. This indicates that the decomposition of H2O2 is triggered through interactions between H2O2 and the polar head group area of PC vesicles.  相似文献   

6.
We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H(2)O(2) and H(2)O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.  相似文献   

7.
A study has been carried out into the interaction of hydrogen halide gases with the polyene systems present in thermally degraded poly(vinyl acetate). Highly coloured products were formed during a dark reaction at 20°C and experimental results indicated a continued deacetylation reaction catalysed by hydrogen halide. A mechanism, involving the double bonds of the polyene systems, has been put forward to explain these results.  相似文献   

8.
This paper discusses the estimation of the decomposition parameters of the liquid–gas-steam system, which is produced by the hydrogen peroxide decomposition at isobar conditions. The thermodynamic analysis calculates the two critical concentrations, which mark the phase transitions of the system depending on the initial pressure and hydrogen peroxide concentration.  相似文献   

9.
10.
Catalytic decomposition of hydrogen peroxide in alkaline solutions   总被引:1,自引:0,他引:1  
Catalytic activity of carbon, platinum-supported on high-area carbon, platinum, lead ruthenate, and ruthenium oxide towards hydrogen peroxide decomposition in alkaline solution is investigated using the rotating disk electrode technique. The heterogeneous rate constant for peroxide decomposition on these catalysts is determined from the slope of log(iL) versus time, where iL is the diffusion-limiting current corresponding to the concentration of peroxide at a given time. The order of catalytic activity is found to be platinum>lead ruthenate>ruthenium oxide>carbon. A general reaction mechanism for the peroxide decomposition on these catalysts is also proposed.  相似文献   

11.
徐葆裕  胡建勋  郑成法 《化学学报》1997,55(10):979-982
研究了UF6+HX(HX=HCl, HBr和HI)反应动力学, 结果显示,UF6+HX反应速率随着HCl-HBr-HI次序增加, 在室温下它们的反应速率常数分别为2.32×10^-^6, 6.43×10^-^4, 5.89×10^-^3s^-^1.Pa^-^1。UF6+HCl和UF6+HBr反应的表观活化能分别为11.29和4.18kj/mol。以上反应速率依次增加, 表出活化能依次减小的趋向与HX的键能以HCl-HBr-HI次序减小相符合。  相似文献   

12.
13.
14.
A converged quantum wave packet study is presented for the unimolecular reaction HOOH → OH+OH induced by the fifth OH-overtone excitation employing an ab initio potential energy surface. All six internal vibrational degrees of freedom are explicitly represented in this simulation for total angular momentum zero. It is found that the decay of the survival probability and of the autocorrelation function is non-exponential and that the long time dynamics is likely due to the superposition of a number of resonance states. The simulated overtone spectrum and rotational product distribution is in good agreement with experimental measurements. It is concluded that: (1) the reaction dynamics is non-statistical on a 30 ps timescale, (2) the observed line width is roughly a factor of 1.7 larger than implied by the reactive lifetimes suggesting that a significant portion of the linewidth is due to intramolecular vibrational energy relaxation, and (3) the quantum reaction rate is suppressed by about a factor of two relative to its classical counterpart.  相似文献   

15.
Halogens are known to play an important role in the tropospheric ozone-depletion chemistry and are of special interest because of their influence on the atmospheric oxidation capacity. In this paper, we investigate the application of a capillary diffusion technique for the generation of gaseous halogen standards like Br2, IBr, ICl and I2. The influence of capillary dimension (i.e. length and inner diameter), ambient pressure and headspace volume of the diffusion vessel on the test gas output has been evaluated. The experimental output rates are determined from the mass loss of the analyte vessel on a regular schedule and compared with their respective theoretical predictions. We also demonstrate that a 1,3,5-trimethoxybenzene-coated diffusion denuder is capable of collecting gaseous ICl quantitatively, which provides an attractive alternative for the rapid determination of the output of test gas devices. The output rates of ICl measured by the denuder method are in close agreements with the data obtained by the gravimetric method.  相似文献   

16.
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H2SO4, the experimental data of T 0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.  相似文献   

17.
The thermodynamics of three pathways of the hydrogen sulfide decomposition reaction is considered. In the thermal process, the gas-phase dissociation of hydrogen sulfide yields hydrogen and diatomic singlet sulfur. Over sulfide catalysts, the reaction proceeds via the formation of disulfane (H2S2) as the key surface intermediate. This intermediate then decomposes to release hydrogen into the gas phase, and adsorbed singlet sulfur recombines into cyclooctasulfur. Over metal catalysts, H2S decomposes via dissociation into surface atoms followed by the formation of gaseous hydrogen and gaseous triplet disulfur. The last two pathways are thermodynamically forbidden in the gas phase and can take place at room temperature only on the surface of a catalyst. An alternative mechanism is suggested for hydrogen sulfide assimilation in the chemosynthesis process involving sulfur bacteria. To shift the hydrogen sulfide decomposition equilibrium toward the target product (hydrogen), it is suggested that the reaction should be conducted at room temperature as a three-phase process over a solid catalyst under a layer of a solvent that can dissolve hydrogen sulfide and sulfur. In this case, it is possible to attain an H2S conversion close to 100%. Therefore, hydrogen sulfide can be considered as an inexhaustible source of hydrogen, a valuable chemical and an environmentally friendly energetic product.  相似文献   

18.
Recent reports on the formation of hydrogen peroxide (H2O2) in water microdroplets produced via pneumatic spraying or capillary condensation have garnered significant attention. How covalent bonds in water could break under such mild conditions challenges our textbook understanding of physical chemistry and water. While there is no definitive answer, it has been speculated that ultrahigh electric fields at the air–water interface are responsible for this chemical transformation. Here, we report on our comprehensive experimental investigation of H2O2 formation in (i) water microdroplets sprayed over a range of liquid flow-rates, (shearing) air flow rates, and air composition, and (ii) water microdroplets condensed on hydrophobic substrates formed via hot water or humidifier under controlled air composition. Specifically, we assessed the contributions of the evaporative concentration and shock waves in sprays and the effects of trace O3(g) on the H2O2 formation. Glovebox experiments revealed that the H2O2 formation in water microdroplets was most sensitive to the air–borne ozone (O3) concentration. In the absence of O3(g), we could not detect H2O2(aq) in sprays or condensates (detection limit ≥250 nM). In contrast, microdroplets exposed to atmospherically relevant O3(g) concentration (10–100 ppb) formed 2–30 µM H2O2(aq), increasing with the gas–liquid surface area, mixing, and contact duration. Thus, the water surface area facilitates the O3(g) mass transfer, which is followed by the chemical transformation of O3(aq) into H2O2(aq). These findings should also help us understand the implications of this chemistry in natural and applied contexts.

A. Gallo Jr, H. Mishra et al., pinpoint the origins of the spontaneous H2O2 formation in water microdroplets formed via spraying or condensation, i.e., without the addition of electrical energy, catalyst, or co-solvent.  相似文献   

19.
A biomimetic catalytic reaction system is developed experimentally for heteromonooxidation of heteroaromatic compounds. The system consists of two interacting simultaneous reactions, decomposition of H2O2 and oxidation of the substrate. This leads to the synthesis, isolation, and identification of the S-monoxide of thiophenes.  相似文献   

20.
A scanning electrochemical microscopy (SECM) approach for the analysis of heterogeneous catalytic reactions at solid-liquid interfaces is described and applied. In this scheme, reactant, generated at a tip, undergoes a reaction (e.g., disproportionation) at the substrate. The theoretical background for this study, performed by digital simulations using a finite difference method, considers a chemical reaction at the substrate with general stoichiometry. In this case, the fraction of regenerated mediator (nu(S)) may differ with respect to a substrate reaction that is the reverse of the tip reaction, resulting in an asymmetric mediator loop. Simulated tip current transients and approach curves at different values of the kinetic rate constant for reactions where nu(S) < 1 were used to analyze this new SECM situation. This approach was used to study the catalytic decomposition of hydrogen peroxide (HO2- --> 1/2O2 + OH-), where nu(S) = 0.5, on supported catalysts. A gold-mercury amalgam tip was used to quantitatively reduce dissolved O2 (mediator) to HO2-, which was decomposed back to oxygen at the catalyst substrate. Rate constants for the decomposition reaction on immobilized catalase and Pt particles were measured at different pH values by the correlation of experimental approach curves with the theoretical dependencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号