首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of charge-transfer (CT) complexes between tetracyanobenzene as acceptor and different aromatic donors were doped with guest donors. The molecular arrangements of the guest CT complexes forming triple energy traps in the host crystal were determined from the triplet ESR spectra of the traps. A method for the determination of relative charge-transfer triplet energies is proposed. Extended electron delocalization over more than one donor-acceptor pair has been found.  相似文献   

2.
Absorption and emission spectroscopy of zone-refined crystals of the charge-transfer complex anthracene-pyromellitic dianhydride have been investigated. The optical spectra are discussed in conjunction with the ESR spectra of the lowest excited triplet state. A strong spin polarization has been observed.  相似文献   

3.
The photophysical properties of a series of 4,6-diphenyl-2,2'-bipyridyl platinum(II) complexes bearing different σ-alkynyl ancillary ligands (1a-1k) were systematically investigated. All complexes exhibit strong (1)π,π* absorption bands in the UV region; and broad, structureless charge-transfer band(s) in the visible region, which systematically red-shift(s) when the electron-donating ability of the para substituent on the phenylacetylide ligand increases. All complexes are emissive in solution at room temperature. When excited at the charge-transfer absorption band, the complexes exhibit long-lived orange emission (λ(max): 555-601 nm), which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). Most of these complexes exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. The reverse saturable absorption (RSA) of these complexes were demonstrated at 532 nm using nanosecond laser pulses. The degree of RSA follows this trend: 1k ≈ 1a > 1c > 1f ≈ 1i > 1h ≈ 1b > 1e > 1d > 1g, which is mainly determined by the ratio of the triplet excited-state absorption cross section to that of the ground-state and the triplet excited-state quantum yield.  相似文献   

4.
A series of Ir(III)-based heteroleptic complexes with phenylpyridine (ppy) and 2-(5-phenyl-4H-[1,2,4]triazol-3-yl)-pyridine (ptpy) derivatives as coordinating ligands has been characterized by a number of experimental and theoretical techniques. Density functional theory (DFT) calculations were able to reproduce and rationalize the experimental redox and excited-states properties of the Ir complexes under study. The introduction of fluorine and trifluoromethyl substituents is found not only to modulate the emission energy but also often to change the ordering of the lowest excited triplet states and hence their localization. The lowest triplet states are best characterized as local excitations of one of the chromophoric ligands (ppy or ptpy). The admixture of metal-to-ligand charge-transfer (MLCT) and ligand-to-ligand charge-transfer (LLCT) character is small and strongly depends on the nature of the excited state; their role is, however, primordial in defining the radiative decay rate of the complexes. The extent of charge-transfer contributions depends on the energy gaps between the relevant molecular orbitals, which can be modified by the substitution pattern.  相似文献   

5.
A series of quasilinear dinuclear complexes incorporating ruthenium(II)- and osmium(II)-tris(2,2'-bipyridine) units has been prepared in which the individual metal-containing moieties are separated by 3,4-dibutyl-2,5-diethenylthiophene spacers and end-capped by 3,4-dibutyl-2-ethenylthiophene subunits; related ruthenium(II) and osmium(II) mononuclear complexes have also been prepared where one bpy unit is likewise end-capped by 3,4-dibutyl-2-ethenylthiophene subunits [bpy = 2,2'-bipyridine]. Overall, mononuclear species, labeled here Ru and Os, and dinuclear species, RuRu, OsOs, and RuOs, have been prepared and investigated. Their electrochemical behavior has been studied in CH3CN solvent and reveals ethenylthiophene-centered oxidations (irreversible steps at > +1.37 V vs SCE), metal-centered oxidations (reversible steps at +1.30 V vs SCE for Ru(II/III) and +0.82 V vs SCE for Os(II/III)), and successive reduction steps localized at the substituted bpy subunits. The spectroscopic studies performed for the complexes in CH3CN solvent provided optical absorption spectra associated with transitions of ligand-centered nature (LC, from the bpy and ethenylthiophene subunits) and metal-to-ligand charge-transfer nature (MLCT), with the former dominating in the visible region (400-600 nm). While the constituent ethenylthiophene-bpy ligands are strong fluorophores (fluorescence efficiency in CH2Cl2 solvent, phi em = 0.49 and 0.39, for the monomer and the dimer, respectively), only weak luminescence is observed for each complex in acetonitrile at room temperature. In particular, (i) the complexes Ru and RuRu do not emit appreciably, and (ii) the complexes Os, OsOs, and RuOs exhibit triplet emission of 3Os --> L CT character, with phi em in the range from 10-3 to 10-4. These features are rationalized on the basis of the role of nonemissive triplet energy levels, 3Th, centered on the ethenylthiophene spacer. These levels appear to lie lower in energy than the 3Ru --> L CT triplet levels, and in turn higher in energy than the 3Os --> L CT triplet levels, along the sequence 3Ru --> L CT > 3Th > 3Os --> L CT.  相似文献   

6.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

7.
An investigation of the photophysics of two complexes, [Pt((t)Bu3tpy)(C triple bond C-perylene)]BF4 (1) and Pt((t)Bu2bpy)(C triple bond C-perylene)2 (2), where (t)Bu3tpy is 4,4',4'-tri( tert-butyl)-2,2':6',2'-terpyridine, (t)Bu2bpy is 4,4'-di( tert-butyl)-2,2'-bipyridine, and C triple bond C-perylene is 3-ethynylperylene, reveals that they both exhibit perylene-centered ligand localized excited triplet states ((3)IL) upon excitation with visible light. These complexes do not display any significant photoluminescence at room temperature but readily sensitize (1)O2 in aerated CH2Cl2 solutions, as evidenced by its characteristic emission near 1270 nm. The transient absorption difference spectra were compared to bi- and tridentate phosphine peryleneacetylides intended to model the (3)IL peryleneacetylide excited states in addition to the related phenylacetylide-bearing polyimine analogues, with the latter model being the respective triplet charge-transfer ((3)CT) excited states. The transient difference spectra of the two title compounds display excited-state absorptions largely attributable to perylene localized (3)IL states yet exhibit somewhat attenuated excited-state lifetimes relative to those of the phosphine model chromophores. The abbreviated lifetimes in 1 and 2 may suggest the involvement of the energetically proximate (3)CT triplet state exerting an influence on excited-state decay, and the effect appears to be stronger in 1 relative to 2, consistent with the energies of their respective (3)CT states.  相似文献   

8.
The triplet state properties of the naphthalene—tetrachlorophthalic (N:TCPA) and naphthalene—tetrabromophthalic (N:TBPA) anhydride π-complex crystals were studied at room temperature using the resonance Raman technique. The RR effect was observed in the triplet charge-transfer states of the two complexes. The heavy-atom effect and charge-transfer complexation are the dominant factors leading to intensity enhancement of donor and acceptor vibrational modes. The relationship between the effect in the complexes and the parent molecules provides evidence for different structures for N:TCPA and N:TBPA in the triplet state. Most probably the N:TCPA complex has the two planar components colinear, with the molecular planes parallel along the molecular axis. The N:TBPA complex probably has the two components bound in such a manner the carbon—bromine bonds are distorted out-of-plane.  相似文献   

9.
A new class of luminescent alkynylplatinum(II) complexes of tridentate bis(N-alkylbenzimidazol-2'-yl)pyridines (bzimpy), [Pt(R,R'-bzimpy)(C[triple chemical bond]C-R')]X (X=PF(6), OTf), and one of their chloro precursor complexes, [Pt(R,R'-bzimpy)Cl]PF(6), have been synthesized and characterized; one of the alkynyl complexes has also been structurally characterized by X-ray crystallography. Electrochemical studies showed that the oxidation wave is alkynyl ligand-based in nature with some mixing of the metal center-based contribution, whereas the two quasi-reversible reduction couples are mainly bzimpy-based reductions. The electronic absorption and luminescence properties of the complexes have also been investigated. In solution, the high-energy and intense absorption bands are assigned as the pi-pi* intraligand (IL) transitions of the bzimpy and alkynyl ligands, whereas the low-energy and moderately intense absorptions are assigned to an admixture of metal-to-ligand charge-transfer (MLCT) (dpi(Pt)-->pi*(R,R'-bzimpy)) and ligand-to-ligand charge-transfer (LLCT) (pi(C[triple chemical bond]C-R')-->pi*(R,R'-bzimpy)) transitions. Upon variation of the electronic effects of the arylalkynyl ligands, vibronic-structured or structureless emission bands, originating from triplet metal-perturbed intraligand (IL) or an admixture of triplet metal-to-ligand charge-transfer (MLCT) and ligand-to-ligand charge-transfer (LLCT) excited states respectively, were observed in solution. Interestingly, two of the complexes showed a dual luminescence that was sensitive to the polarity of the solvents. Upon cooling from 298 K to 155 K, drastic color, UV/Vis, and luminescence changes were observed in a butyronitrile solution of 1, and were ascribed to the formation of aggregate species through PtPt and pi-pi stacking interactions. DFT and time-dependent DFT (TD-DFT) calculations have been performed to verify and elucidate the results of the electrochemical and photophysical properties.  相似文献   

10.
Engineering the electronic excited state manifolds of organic molecules can give rise to various functional outcomes, including ambient triplet harvesting, that has received prodigious attention in the recent past. Herein, we introduce a modular, non-covalent approach to bias the entire excited state landscape of an organic molecule using tunable ‘through-space charge-transfer’ interactions with appropriate donors. Although charge-transfer (CT) donor–acceptor complexes have been extensively explored as functional and supramolecular motifs in the realm of soft organic materials, they could not imprint their potentiality in the field of luminescent materials, and it still remains as a challenge. Thus, in the present study, we investigate the modulation of the excited state emission characteristics of a simple pyromellitic diimide derivative on complexation with appropriate donor molecules of varying electronic characteristics to demonstrate the selective harvesting of emission from its locally excited (LE) and CT singlet and triplet states. Remarkably, co-crystallization of the pyromellitic diimide with heavy-atom substituted and electron-rich aromatic donors leads to an unprecedented ambient CT phosphorescence with impressive efficiency and notable lifetime. Further, gradual minimizing of the electron-donating strength of the donors from 1,4-diiodo-2,3,5,6-tetramethylbenzene (or 1,2-diiodo-3,4,5,6-tetramethylbenzene) to 1,2-diiodo-4,5-dimethylbenzene and 1-bromo-4-iodobenzene modulates the source of ambient phosphorescence emission from the 3CT excited state to 3LE excited state. Through comprehensive spectroscopic, theoretical studies, and single-crystal analyses, we elucidate the unparalleled role of intermolecular donor–acceptor interactions to toggle between the emissive excited states and stabilize the triplet excitons. We envisage that the present study will be able to provide new and innovative dimensions to the existing molecular designs employed for triplet harvesting.

A modular, non-covalent donor–acceptor strategy is proposed to bias the excited-state manifold of organic systems and to realize unprecedented charge-transfer phosphorescence.  相似文献   

11.
We report the redox, absorption, and emission characteristics of the tris(1,10-phenanthroline)ruthenium(II) complexes [Ru(phen)(3)](2+) bearing a (dimesityl)boryldurylethynyl (DBDE) charge-transfer (CT) unit at the 4 (4BRu(2+)) or 5 (5BRu(2+)) position of one of the three phen ligands. In acetonitrile at 298 K, 4BRu(2+) showed absorption and emission maximum wavelengths at 473 and 681 nm, respectively, which were shifted to longer wavelengths by 25 and 74 nm, respectively, compared with the relevant value of 5BRu(2+), 448 and 607 nm, respectively. The effects of a fluoride ion on the absorption and emission spectra of the complexes demonstrated that the CT interaction between the π-electron system in the phen ligand (π(aryl)) and the vacant p orbital on the boron atom (p(B)) in the DBDE group (i.e., π(aryl)-p(B) CT) participated in the excited states of the complexes in addition to the Ru(II)-to-phen metal-to-ligand CT (MLCT) interaction. Reflecting such synergistic MLCT/π(aryl)-p(B) CT, both 4BRu(2+) and 5BRu(2+) exhibited intense emission at 298 K with a quantum yield of 0.11. Furthermore, the emission lifetime of 4BRu(2+) was as long as 12 μs and almost independent of the temperature (T = 280-330 K). The present study indicated that the nonemissive dd excited triplet state did not participate to nonradiative decay in the MLCT excited triplet state of 4BRu(2+). The effects of the synergistic MLCT/π(aryl)-p(B) CT interactions on the redox, absorption/emission, and photophysical characteristics of 4BRu(2+) and 5BRu(2+) are discussed in detail.  相似文献   

12.
The spectroscopic kinetic characteristics of the fluorescence of anthracene adsorbed on silica gel have been investigated. The formation of charge-transfer (CT) complexes between the anthracene molecules and acceptor sites on silica gel which had been heat-treated in a vacuum has been discovered. Along with the emission of the CT complexes, the luminescence of an excited CT complex, i.e., an exciplex, has been detected. Hypotheses regarding the nature of the electron-acceptor sites on silica gel have been advanced.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 1, pp. 118–123, January–February, 1985.  相似文献   

13.
Lee PK  Law WH  Liu HW  Lo KK 《Inorganic chemistry》2011,50(17):8570-8579
A series of luminescent cyclometalated iridium(III) polypyridine complexes containing a di-2-picolylamine (DPA) moiety [Ir(N^C)(2)(phen-DPA)](PF(6)) (phen-DPA = 5-(di-2-picolylamino)-1,10-phenanthroline) (HN^C = 2-phenylpyridine, Hppy (1a), 2-(4-methylphenyl)pyridine, Hmppy (2a), 2-phenylquinoline, Hpq (3a), 4-(2-pyridyl)benzaldehyde, Hpba (4a)) and their DPA-free counterparts [Ir(N^C)(2)(phen-DMA)](PF(6)) (phen-DMA = 5-(dimethylamino)-1,10-phenanthroline) (HN^C = Hppy (1b), Hmppy (2b), Hpq (3b), Hpba (4b)) have been synthesized and characterized, and their photophysical and electrochemical properties investigated. Photoexcitation of the complexes in fluid solutions at 298 K and in alcohol glass at 77 K resulted in intense and long-lived luminescence. The emission of the complexes has been assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dπ(Ir) → π*(N^N)) or triplet intraligand ((3)IL) (π → π*) (N^C) excited state and with substantial mixing of triplet amine-to-ligand charge-transfer ((3)NLCT) (n → π*) (N^N) character, depending on the identity of the cyclometalating and diimine ligands. Electrochemical measurements revealed an irreversible amine oxidation wave at ca. +1.1 to +1.2 V vs saturated calomel electrode, a quasi-reversible iridium(IV/III) couple at ca. +1.2 to +1.6 V, and a reversible diimine reduction couple at ca. -1.4 to -1.5 V. The cation-binding properties of these complexes have been studied by emission spectroscopy. Upon binding of zinc ion, the iridium(III) DPA complexes displayed 1.2- to 5.4-fold emission enhancement, and the K(d) values determined were on the order of 10(-5) M. Job's plot analysis confirmed that the binding stoichiometry was 1:1. Additionally, selectivity studies showed that the iridium(III) DPA complexes were more sensitive toward zinc ion among various transition metal ions examined. Furthermore, the cytotoxicity of these complexes toward human cervix epithelioid carcinoma cells have been studied by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay and their cellular-uptake properties by inductively coupled plasma mass spectrometry and laser-scanning confocal microscopy.  相似文献   

14.
A series of push-pull donor-pi-conjugated dipicolinic acid ligands and related tris-dipicolinate europium and lutetium complexes have been prepared. The ligands present broad absorption and emission transitions in the visible spectral range unambiguously assigned to charge-transfer transitions (CT) by means of time-dependent density functional theory calculations. The photophysical properties (absorption, emission, luminescence quantum yield, and lifetime) of the corresponding europium complexes were thoroughly investigated. Solvatochromism and temperature effects clearly confirm that Eu(III) sensitization directly occurs from the ligand CT state. In addition, modulation of the energy of the CT donating state by changing the nature of the donor fragment allows the optimal energy of the antennae for europium sensitization to be determined, and this optimal energy was found to be close to the (5)D 1 accepting state. Finally, this CT sensitization process has been successfully extended to near-infrared emitters (neodymium and ytterbium).  相似文献   

15.
A series of linear polynuclear ruthenium(II) tris(2,2′-bipyridine) complexes has been synthesized whereby individual chromophores are separated by 1,4-diethynylenebenzene subunits bearing alkoxy groups for improved solubility. These arrays contain two, three, four or five metal centers. The compounds are reasonably soluble in polar organic solvents and they possess optical absorption spectral properties that are dominated by transitions associated with the polytopic ligand. Weak luminescence is observed for each complex in deoxy genated acetonitrile at room temperature that appears to be characteristic of emission from a metal-to-ligand charge-transfer triplet state. The emission lifetime is essentially independent of temperature, at least over a modest range. There is no indication for interaction between close-lying triplet states and no obvious sign of a low-energy τ, τ* triplet associated with the polytopic ligand. The photophysical properties suggest that the longer arrays are segmented.  相似文献   

16.
Many luminescent transition metal polypyridine complexes display intense and long-lived triplet charge-transfer and intraligand transition emission with a large Stokes’ shift. These properties render them promising candidates as luminescent probes for ions, DNA, peptides, proteins and other biological entities. In this review article, we have summarised recent reports on ion, molecular and biological probes derived from luminescent rhenium(I) and iridium(III) polypyridine complexes. These complexes have been appended with different recognition moieties that interact with ions and biological molecules. The recognition is reflected by a change of spectroscopic and/or photophysical properties of the probes. The use of these complexes as cellular probes and imaging reagents has also been discussed.  相似文献   

17.
We report the synthesis, characterization, photophysical, and electrochemical properties of a series of luminescent cyclometalated iridium(III) complexes containing two aldehyde functional groups [Ir(pba)(2)(N-N)](PF(6)) (Hpba=4-(2-pyridyl)benzaldehyde; N-N=2,2'-bipyridine, bpy (1), 1,10-phenanthroline, phen (2), 3,4,7,8-tetramethyl-1,10-phenanthroline, 3,4,7,8-Me(4)-phen (3), 4,7-diphenyl-1,10-phenanthroline, 4,7-Ph(2)-phen (4)). The X-ray crystal structure of complex 1 has been investigated. Upon photoexcitation, complexes 1-4 exhibit intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The luminescence is assigned to a triplet intra-ligand ((3)IL) excited state associated with the pba(-) ligand, probably with mixing of some triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(pba(-))) character. Since each of these complexes possesses two aldehyde groups, which can react with the primary amine groups of biomolecules to form stable secondary amines after reductive amination, we have investigated the possibility of these complexes as novel luminescent cross-linkers for biological substrates. L-Alanine has been labeled with complexes 1-4 to give the luminescent bioconjugates 1-(Ala)(2)-4-(Ala)(2). These conjugates show strong photoluminescence with long emission lifetimes under ambient conditions. On the basis of the emission energy trend, the excited state of these luminescent bioconjugates is likely to bear a high parentage of (3)MLCT (dpi(Ir)-->pi*(N-N)) character. In addition, the glycoprotein avidin (Av) has also been conjugated with complexes 1-4 to give the bioconjugates 1-Av-4-Av. Upon photoexcitation, these bioconjugates also display intense and long-lived (3)MLCT (dpi(Ir)-->pi*(N-N)) emission in aqueous buffer at 298 K. Furthermore, a heterogeneous competitive assay for biotin has been developed using 2-Av and biotinylated microspheres. We have shown that complexes 1-4 represent a new class of multicolor luminescent cross-linkers for biomolecular species.  相似文献   

18.
The promotion of intersystem crossing (ISC) is critical for achieving a high-efficiency long-persistent luminescence (LPL) from organic materials. However, the use of a transition-metal complex for LPL materials has not been explored because it can also shorten the emission lifetime by accelerating the phosphorescence decay. Here, we report a new class of LPL materials by doping a monovalent Au-carbene complex into a boron-embedded molecular host. The donor-acceptor systems exhibit photoluminescence with both high efficiencies (>57 %) and long lifetimes (ca. 40 ms) at room temperature. It is revealed that the Au atom promotes the population of low-lying triplet excited states of the host aggregate (T1*) which can be converted into the charge-transfer (CT) state, thereby resulting in afterglow luminescence. Moreover, the use of a chirality unit on the guest molecule results in the LPL being circularly polarized. This work illustrates that transition-metal complexes can be used for developing organic afterglow systems by exquisite control over the excited state mechanism.  相似文献   

19.
A series of new heteroleptic and homoleptic Ru(II) complexes containing variously substituted bis(pyridyl)triazine ligands has been prepared and their absorption spectra, redox behaviour and luminescence properties (both in fluid solution at room temperature and in a rigid matrix at 77 K) have been investigated. For some compounds, X-ray structures have also been determined. The new bis(pyridyl)triazines incorporate additional chromophores, such as biphenyl, phenanthrene, anthracene and bromoanthracene derivatives, so the Ru(II) species can be considered as multichromophoric species. The absorption spectra and redox properties of all the metal complexes have been assigned to features belonging to specific subunits, thus suggesting that these species can be regarded as multicomponent, supramolecular assemblies from an electronic coupling point of view. Whereas most of the complexes exhibit luminescence properties that can be attributed to metal-to-ligand charge-transfer (MLCT) states involving the metal-based subunit(s), the species containing the anthryl and, even more, the brominated anthryl chromophores exhibit complicated luminescence behaviour. For example, 2 d (the anthryl-containing heteroleptic metal compound) exhibits MLCT emission at room temperature and emission from the anthracene triplet at 77 K; 2 e (the bromo-substituted anthryl-containing heteroleptic metal compound) exhibits anthryl-based emission at 77 K and MLCT emission at room temperature, but with a prolonged lifetime, thus suggesting equilibration between two triplet states that belong to different chromophores. The equilibration regime between MLCT and aromatic hydrocarbon triplet states is therefore reached by suitable substitution on the organic chromophore.  相似文献   

20.
Quantum-chemical methods are applied to study the nature of the excited states relevant in the photophysical processes (absorption and emission) of a series of polyazaaromatic-ligand-based ruthenium(II) complexes. The electronic and optical properties of the free polyazaaromatic ligands and their corresponding ruthenium(II) complexes are determined on the basis of correlated Hartree-Fock semiempirical approaches. While the emission of complexes containing small-size ligands, such as 1,10-phenanthroline or 2,2'-bipyridine, arises from a manifold of metal-to-ligand charge-transfer triplet states ((3)MLCTs), an additional ligand-centered triplet state ((3)L) is identified in the triplet manifold of complexes containing a pi-extended ligand such as dipyrido[3,2-a:2',3'-c]phenazine, tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine, and 1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene. Recent experimental data are interpreted in light of these theoretical results; namely, the origin for the abnormal solvent- and temperature-dependent emission measured in pi-extended Ru complexes is revisited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号