首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酞菁和酞菁铜的三阶非线性光学性质   总被引:1,自引:0,他引:1  
封继康  李君  孙家钟 《化学学报》1994,52(6):539-544
用INDO/SDCI方法研究了酞菁和酞菁铜的电子结构, 紫外-可见光谱, 三阶非线性光学系数及其色散效应, 发现酞菁铜中Cu^2+对γ的贡献很小, 故酞菁与酞菁铜的γ几乎相等, 我们的计算结果对此进行了合理的解释。  相似文献   

2.
Diffuse-reflectance laser flash photolysis has been used to record transient spectra and decay kinetics of the photodynamic therapy sensitizer disulfonated aluminium phthalocyanine in two murine cancer cell lines, P815 derived from white mouse mast cells, and EL4, a lymphoblast derived from black mouse lymphocytes. In contrast to results with bacterial cells and yeasts, no transient other than the triplet state of the sensitizer was detected, suggesting that unlike the case in microbes, Type I electron-transfer processes play no role in the photodestruction of the murine cells studied.  相似文献   

3.
Insoluble CuMePc nanocrystals were incorporated into P3HT:PCBM bulk heterojunction photovoltaic cells to increase the carrier mobility and photon harvesting. The P1C1-based (weight ratio of P3HT:?CuMePc = 1:1) OPV cell exhibited the best photovoltaic performance with a J(SC) of 16.3 mA cm(-2), V(OC) of 0.58 V, FF of 0.56 and PCE of 5.3%.  相似文献   

4.
The electrical transmission of copper(II) phthalocyanine (CuPc) sandwiched between gold nanoelectrodes is studied on the basis of the Green function formalism coupled with the Gaussian-broadening technique. In the Au-CuPc-Au junction, broadened density of states (DOS) of the Au chains is defined as continuous DOS of electrodes to calculate the Green function of the electrodes. Two peaks of the transmission function found in the vicinity of the Fermi level are analyzed in terms of molecular orbitals (MOs). A convenient procedure to analyze MO contribution to a transmission peak is proposed. It is found that (I) symmetry-matched interactions between CuPc and the gold nanoelectrodes are important to the enhancement of the transmission function and (II) the nanoelectrodes have almost no effect on the electronic states of CuPc.  相似文献   

5.
The growth of copper phthalocyanine thin films evaporated on polycrystalline gold is examined in detail using near edge x-ray absorption fine structure spectroscopy and surface sensitive x-ray photoemission spectroscopy. The combination of both methods allows distinguishing between the uppermost layers and buried interface layers in films up to approximately 3 nm thickness. An interfacial layer of approximately 3 ML of molecules with an orientation parallel to the substrate surface was found, whereas the subsequent molecules are perpendicular to the metal surface. It was shown that even if the preferred molecular orientation in thin films is perpendicular, the buried interfacial layer can be oriented differently.  相似文献   

6.
A monomer and polymer of a copper(II) phthalocyanine have been synthesized in order to develop structure-property relationships. Various electroactive properties such as dielectric constant, resistivity and thermally stimulated depolarization effects were investigated in order to examine the influence of extended conjugation.  相似文献   

7.
Novel ternary nanocomposites films of Polypyrrole/copper/graphene oxide (PPy/Cu/GO) showed enhanced optical and electronic properties. In this study, PPy/Cu/GO films were synthesized with different GO load (0.0, 0.4, 0.6, and 0.8 wt%) using electrochemical deposition technique. The structural, optical and electrical properties of the composites were evaluated using X-Ray Diffraction (XRD) spectroscopy, UV–visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and four-point probe methods. XRD results reveal that the GO was completely intercalated and dispersed uniformly in the nanocomposites. The results also revealed that the nanocomposite films are crystalline in nature, with distinct peaks corresponding to indexed miller indices. UV-visible analysis revealed that all of the nanocomposites showed good UV absorbance which was significant in the UV–Vis region of ≈450 nm. The energy band gap decreased with increase in GO load and was found within 3.46 to 2.25 eV, across the range of GO load which fall within the range of energy band gap for photovoltaic applications. The SEM results revealed that the nanocomposite films showed unevenly shaped structures with porous surface which increases with increasing GO loading, while the EDX result revealed the presence of carbon, oxygen nitrogen and copper as fundamental elements deposited. The nanocomposites' four-point probe analysis revealed slight increase in conductivity with low GO content. The incorporation of Cu and GO nanoparticles in PPy matrix provides a better balance and thus improved the photovoltaic properties of PPy/Cu/GO making them suitable for photovoltaic applications.  相似文献   

8.
The electronic structure of copper-phthalocyanine (CuPc) has been studied both experimentally and theoretically. Experiments have been performed on alpha and beta crystalline phases, using photoemission spectroscopy to probe core levels and valence band spectra. Different photon energies have been used, in order to probe different sample depths. Only minor differences have been observed in the experimental data on the two different phases, except for a small charge effect on the beta phase crystal. First-principles calculations have been performed using the density functional for molecular and three-dimensional periodic solids (Dmol(3)) code on both the single CuPc molecule and the beta phase, allowing the identification of the different atomic and angular contributions to the experimental density of states. In particular, the highest occupied molecular level is mainly due to Cu and N states. The comparison between theoretical data obtained for the CuPc in the beta phase and in the single molecule shows that the interchain interaction between the molecules is negligible, whereas slightly stronger intrachain interactions occur.  相似文献   

9.
10.
Four α-, β-, γ- and ε-polymorphic forms of copper phthalocyanine are synthesized. They are characterized and their properties are compared based on the IR spectral measurements in the finger print region, magnetic susceptibility measurements, ESR study, powder X-ray diffraction and electrical conductivity studies. The data support the existence of all the four polymorphic forms. All the forms are having the monoclinic structure with different crystal lattice constants. The electrical conductivity study in air from 25°C to 200°C for all the four polymorphic modifications are done and their differences may be accounted for difference in interplanar spacing, molecular orientations, intermolecular interactions and mobilities of the charge carriers.  相似文献   

11.
The development of alternative low-cost and high-performing hole-transporting materials(HTMs) is of great significance for the potential large-scale application of perovskite solar cells(PSCs) in the future.Here,a facilely synthesized solution-processable copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine(CuPc-DMP) via only two simple steps,has been incorporated as a hole-transporting material(HTM) in mesoscopic perovskite solar cells(PSCs).The optimized devices based on such a HTM afford a very competitive power conversion efficiency(PCE) of up to 17.1%measured at 100 mW cm~(-2) AM 1.5G irradiation,which is on par with that of the well-known 2,2',7,7'-tetrakis(N'N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene(spiro-OMeTAD)(16.7%) under equivalent conditions.This is,to the best of our knowledge,the highest value reported so far for metal organic complex-based HTMs in PSCs.The advantages of this HTM observed,such as facile synthetic procedure,superior hole transport characteristic,high photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs.The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost-effective and high-performing PSCs.  相似文献   

12.
Abstract Photodynamic therapy (PDT), the use of light-activated drugs, is a promising treatment of cancer as well as several nonmalignant conditions. However, the efficacy of one-photon (1-gamma) PDT is limited by hypoxia, which can prevent the production of the cytotoxic singlet oxygen ((1)O(2)) species, leading to tumor resistance to PDT. To solve this problem, we propose an irradiation protocol based on a simultaneous, two-photon (2-gamma) excitation of the photosensitizer (Ps). Excitation of the Ps triplet state leads to an upper excited triplet state T(n) with distinct photochemical properties, which could inflict biologic damage independent of the presence of molecular oxygen. To determine the potential of a 2-gamma excitation process, Jurkat cells were incubated with zinc or copper phthalocyanine tetrasulfonate (ZnPcS(4) or CuPcS(4)). ZnPcS(4) is a potent (1)O(2) generator in 1-gamma PDT, while CuPcS(4) is inactive under these conditions. Jurkat cells incubated with either ZnPcS(4) or CuPcS(4) were exposed to a 670 nm continuous laser (1-gamma PDT), 532 nm pulsed-laser light (2-gamma PDT), or a combination of 532 and 670 nm (2-gamma PDT). The efficacy of ZnPcS(4) to photoinactivate the Jurkat cells decreased as the concentration of oxygen decreased for both the 1-gamma and 2-gamma protocols. In the case of CuPcS(4), cell phototoxicity was measured only following 2-gamma irradiation, and its efficacy also decreased at a lower oxygen concentration. Our results suggest that for CuPcS(4) the T(n) excited state can be populated after 2-gamma irradiation at 532 nm or the combination of 532 and 670 nm light. Dependency of phototoxicity upon aerobic conditions for both 1-gamma and 2-gamma PDT suggests that reactive oxygen species play an important role in 1-gamma and 2-gamma PDT.  相似文献   

13.
Aqueous solutions of aluminium phthalocyanine tetrasulphonate (AlPcS(4)) were investigated by means of absorption and fluorescence spectroscopy. The absorption spectrum of AlPcS(4) is independent of concentration in a wide range (from 10(-8) to 10(-4) M). The fluorescence spectrum measured with a standard setup is strongly dependent on AlPcS(4) concentration, and the fluorescence maximum is gradually red-shifted with increasing concentration. Calculations that take into account reabsorption of fluorescence (inner-filter effect) fit the experimental observations at low concentrations (up to 10(-6) M). Disagreement between the calculations and spectra recorded at higher concentrations (above 10(-5) M) shows that the reabsorbed light may be reemitted as fluorescence. The influence of inner-filter effects on the spectral shape was demonstrated by the experiments where a fibre-optic front-face fluorescence setup was applied: Under such conditions the shape of the fluorescence spectra for a high concentration (10(-3) M) coincided with that of a low concentration (10(-8) M). In conclusion, the present spectroscopic results show that AlPcS(4) does not form aggregates and is a very stable compound in aqueous solutions.  相似文献   

14.
Copper and cobalt complexes of tetra[4,5]([8,9](benzo[f]quinoline-7,10-dione)phthalocyanine, tetra[4,5]-([6,7]1-acetyl-2H-naphtho[2,3-d][1,2,3]triazole-5,8-dione) phthalocyanine, and tetra[4,5]([6,7]3-methylquinoline-5,8-dione)phthalocyanine were synthesized and their spectral properties were investigated.  相似文献   

15.
16.
17.
As one of the most primitive nonlinear optical phenomena, optical second harmonic genera-tion (SHG) has been investigated for half a century and it has become a very useful spectroscopic tool in the study of surface and interface[1—3]. It was theoretically shown that the SH signal cannot be generated in a centrosymmetric system. However, the generation of SH signal from the centro-symmetric molecules such as fullerene (C60) and CuPc has been detected[4—7]. In our recent ex-periments, an …  相似文献   

18.
19.
Kazuyuki Moriwaki 《Tetrahedron》2010,66(36):7316-7321
Novel methanofullerenes 3 having ethylthienyl and/or n-pentyl groups were designed and synthesized for the purpose of developing new acceptors for an organic photovoltaic cell with higher performance than that of the [6,6]-phenyl-C61-butylic acid methyl ester (PCBM) used as the standard acceptor. The electronic absorption spectra and cyclic voltammetry (CV) of 3, PCBM, and [6,6]-(thiophene-2-yl)-C61-butylic acid methyl ester (ThCBM) were measured to estimate solubility and reduction potentials as characteristics of n-type semiconductor for organic photovoltaic devices. The CV measurements revealed reversible reduction waves for all of the methanofullerenes and the first reduction potentials of the n-pentyl-substituted 1-(5-ethylthiophene-2-yl)-[6,6]-methanofullerene[60] (3b) and 1-phenyl-[6,6]-methanofullerene[60] (3c) were negatively shifted compared to those of the corresponding terminal methyl ester-substituted homologues (3a and PCBM). The performances of photovoltaic devices consisting of 3b and 3c were slightly higher than those of PCBM.  相似文献   

20.
We present a novel electrochemical approach to grow copper phthalocyanine (CuPc) thin-film photoelectrodes through anodic oxidation of copper and dilithium phthalocyanine (Li2Pc). This circumvents the challenges associated with the electrochemical processing of unsubstituted CuPc from solution. The potentiostatic co-electrooxidation reaction at the heterogeneous interface favors the growth of CuPc thin film. The surface morphology of thin film exhibits nanorod-like features. UV-Vis, grazing angle Fourier transform infrared (FTIR), and grazing angle X-ray diffraction patterns reveal that the nanocrystalline phase corresponds only to α-CuPc and no admixture of other polymorphs. Photocurrent measurement shows a stable photoresponse in neutral medium. The photoelectrochemical hydrogen evolution on p-type CuPc coated copper photocathode shows an enhanced activity over bare copper and indium tin oxide (ITO) electrodeposited with CuPc and monolithium phthalocyanine radical (LiPc) thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号