首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

2.
The crystal structure of KxP4W14O50 (x = 1.4) has been solved by three-dimensional single crystal X-ray analysis. The refinement in the cell of symmetry A2m, with a = 6.660(2) Å, b = 5.3483(3) Å, c = 27.06(5) Å, and β = 97.20(2)°, Z = 1, has led to R = 0.036 and Rw = 0.039 for 2436 reflections with σ(I)I ≤ 0.333. This structure belongs to the structural family KxP4O8(WO3)2m, called monophosphate tungsten bronzes (MPTB), which is characterized by ReO3-type slabs of various widths connected through PO4 single tetrahedra. This bronze corresponds to the member m = 7 of the series and its framework is built up alternately of strands of three and four WO6 octahedra. The structural relationships with the P4O8(WO3)2m series, called M′PTB, are described and the possibility of intergrowth between these two structures is discussed.  相似文献   

3.
We present a new series of ternary chalcogenides, derived from divalent molybdenum: M2Mo6X6. These compounds crystallize in a hexagonal lattice with a ≈ 9 Å, c ≈ 4.5 Å, and space group P63m. The compounds are characterized by clusters (Mo3)1 in the form of linear chains, resulting from a linear condensation of Mo6 octahedral clusters. The (Mo3)1 clusters are well separated from each other, with the shortest MoMo intercluster distance larger than 6 Å. The resulting pseudo-one-dimensional structures show remarkable anisotropy of physical properties.  相似文献   

4.
Several outstanding aspects of phase behaviour in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi1.8La0.2WO6 (L-Bi2WO6 type) and BiLaWO6, BiNdWO6, Bi0.7Yb1.3WO6 and Bi0.7Yb1.3WO6 (all H-Bi2WO6 type). Phase evolution within the solid solution Bi2−xLaxMoO6 has been re-examined, and a crossover from γ(H)-Bi2MoO6 type to γ-R2MoO6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO6 has confirmed the α-R2MoO6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites.  相似文献   

5.
Isothermal total pressure vs. liquid and vapour composition (P-x-y) equilibrium data are presented for the DMSO-H2O and DMSO-H2O-0.9 m NaClO4 systems. A modified transpiration technique was used to measure the saturated vapour pressures. The compositions of the equilibrium liquid and condensed vapour phases were determined by precision refractometry. The salt appreciably affects the activity coefficients of the solvent components; the effect is discussed in terms of interactions between the DMSO and H2O molecules and of the preferential solvation of the salt.  相似文献   

6.
We report Franck-Condon factors for the I2 B → X transitions excited by several lines of Ar+, Kr+ and He-Ne lasers and observed in fluorescence. The most recent and accurate molecular constants of Luc have been used in the calculation.  相似文献   

7.
The first members of the series AxP4O8(WO3)2m were studied by means of electron microscopy. These bronzes can be classified into two groups on the basis of ReO3-type block composition: even- and odd-m members. High-resolution lattice images of tungstophosphate crystals (m ≤ 10) allow us to establish a correlation between the image contrast and the framework of the structure. The structural mechanism proposed for this series is discussed and compared to the possibility of intergrowth, and to the crystallographic shear phenomena observed in tungsten and molybden oxides.  相似文献   

8.
High pressure vapour-liquid equilibrium data for the C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 systems are presented. The data are obtained isothermally in the range from 200 K to 290 K. For each point of data, temperature, pressure and liquid and vapour phase mole fractions are measured.Values for the vapour phase mole fractions are calculated from the obtained pressure, temperature and liquid phase mole fractions. The calculated values are compared with the experimental results, and it is found that the average mean deviation between calculated and experimental mole fractions is less than 0.009 for the systems considered in this work.  相似文献   

9.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

10.
Calculations of the vibrational—rotational product state population distributions and differential cross sections for the chemical reaction H + H2(v ? 2, j = 0) → H2(v′ ? 2, j′, mj) + H have been carried out on the Porter—Karplus potential energy surface. The vibrationally-adiabatic-distorted-wave (VADW) method has been used. The relative rotational product distributions, differential cross sections and the helicity mj, dependences of these quantities for the v = 0 reaction agree well with accurate close-coupling results. The absolute integral cross sections are considerably smaller than the accurate quantum values, however. The calculations for the v = 1 reaction agree with the findings of previous sudden quantum, limited close-coupling and quasiclassical theoretical studies and experiments that product H2(v′ = 1) is more likely to be produced than H2(v′ = 0). For the reaction with v = 2, it is found that at high translational energies product H2(v′ = 2) is favoured over H2(v′ = 1) or H2(v′ = 0). The VADW differential cross sections for the v = 1 and v = 2 reactions have a similar shape to those of the v = 0 reaction, with backward peaking when summed over all mj states. The relative rotational distributions for the v = 2, j = 0 → v′ = 2, j and v = 1, j = 0 → v′ = 1, j reactions are also similar to those obtained for the v = 0, j = 0 → v′ = 0, j reaction, with low rotational excitation.  相似文献   

11.
The distribution of La3+ and Ca2+ over the cation sites in Ca2La8(SiO4)6O2 was determined by single-crystal X-ray diffraction. Ca2La8(SiO4)6O2 has the apatite structure, and all available evidence indicates that the space group is P63m, thus precluding a completely ordered structure. The 6h lattice sites are occupied by La3+. In contrast, the 4f sites are occupied equally by La3+ and Ca2+ ions. Consideration of the properties of the La3+ and Ca2+ ions suggests that this distribution is thermodynamically favored for this composition. A simple Ising model suggests ordered columns. These would not be precluded by space group P63m, if the correlation between adjacent columns were random.  相似文献   

12.
The high temperature reaction of C60 with silver(I) trifluoroacetate followed by 500 °C sublimation and subsequent HPLC purification has led to the isolation of the five trifluoromethyl[60]fullerenes C60(CF3)n (n=2, 4, 6, 8, 10). Four of them have >90% compositional purity. Two of the compounds, C60(CF3)4 and C60(CF3)6, were obtained as C1-symmetry isomers with >90% isomeric purity, and a sample of C60(CF3)2 also contained ca. 15-20% of a Cs-symmetry isomer of C60(CF3)4. The new compounds were characterized by IR and EI mass spectrometry (all five compounds), NMR spectroscopy (C60(CF3)2, C60(CF3)4, and C60(CF3)6), and 2D COSY NMR spectroscopy (C60(CF3)4 and C60(CF3)6). Calculations at the AM1 and DFT levels of theory have led to the prediction of the most likely structures for C60(CF3)2, C1-C60(CF3)4, Cs-C60(CF3)4, and the two most likely structures of C1-C60(CF3)6.  相似文献   

13.
We present a study of the properties of the series Mo6X8?xYx (X = S, Se, Te; Y = Br, I) having the hexagonal rhombohedral structure of the PbMo6S8 type. For X = S we have found two new superconducting compounds Mo6S6Br2 and Mo6S6I2, having critical temperatures of 13.8 and 14.0°K, respectively. We further find that Mo6Te8 becomes superconducting (Tc ≈ 2.6°K) upon substitution of Te by small quantities of iodine, and that in the case of Mo6Se8 substitution of a Se atom by a halogen, raises Tc up to about 7.6°K.  相似文献   

14.
The single crystal structure of a series of nine isotypic Mo(V) diphosphates was determined from crystals with composition A2+(MoO)10(P2O7)8 (A=Ba, Sr, Ca, Cd, Pb) and A+(MoO)5(P2O7)4 (A=Ag, Li, Na, K). The structure of those phosphates, built up of corner sharing MoO6 octahedra, MoO5 tetragonal pyramids and P2O7 diphosphates groups, forms eight-sided tunnels as described by Lii et al. for A=Ag. New features are evidenced: (1) existence of two orientations, up and down along b for the MoO5 pyramids; (2) maximum insertion rate of the divalent cations which is twice less than that of the univalent cations; (3) different behavior of the series “Pb, Sr, Ba, Li, Na, K” which exhibits only one kind of site for the inserted cation, compared to the “Cd, Ca, Ag” series for which two kinds of sites are observed; (4) off-centering of the A-site cations with respect to the tunnel axis; and (5) unusually high thermal factors along the tunnel axis, but absence of ionic conductivity.  相似文献   

15.
Thermal decomposition of LiPF6 and LiBC4O8 (lithium bis(oxalate)borate, abbreviated as LiBOB) were studied using TG (thermogravimetry)-DTG (derivative thermogravimetry) method with different heating rate β of 5, 10, 20 and 40°C min−1 or at different constant temperature θ C (109·80, 118·79, 148·41, 176·86°C for LiPF6 and 278·51, 298·13, 317·65, 336·13 for LiBOB). From the non-isothermal kinetics we calculate that is 1·01, n LiBOB is 1·04, is 91907·61 J/mol, and E LiBOB is 205179·88 J/mol; from the isothermal kinetics we calculate that n for both LiPF6 and LiBOB are 1, ELiPF6 is 91907·61 J/mol, E LiBOB is 205179·88 J/mol, is 16·89 s−1, and lnALiBOB is 31·96 s−1. The results obtained from the two ways have minor differences and can validate each other.  相似文献   

16.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

17.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

18.
The phase diagrams of 14 SrF2(Y,Ln)F3 systems are given, where Ln are all the lanthanides except Pm and Eu. The diagrams have been constructed for temperature intervals from 850°C to the melting points according to the thermal and X-ray analysis. The fusibility diagrams for 12 systems have been obtained for the first time. The oxygen content in the specimens before and after thermal treatment was checked. The thermal behavior of the three types of solid solutions has been studied: (1) with the fluorite-type defective structure and its derivatives; (2) with the defective structure of the lanthanum fluoride, and (3) α-YF3(α-UO3) types. Maxima reflecting a noticeable effect of thermal stabilization on the fluorite-type structure by the heterovalent isomorphous substitution have been found for the majority of systems (with Ln = LaHo). The Sr1?xLnxF2+x nonstoichiometric fluorite phases are formed in all the systems. Similar maxima corresponding generally to irrational compositions are present on the fusibility curves of the Ln1?ySryF3?y nonstoichiometric phases with the LaF3-type structure (tysonite). Tysonite solid solutions are in all the systems, too. Nonstoichiometric phases with the α-YF3-type structure are formed in the systems with Ln = ErLu. They are decomposed in the process of cooling and are the most unstable. The structure of the phase diagrams in the regions adjacent to lanthanide trifluorides are determined by polymorphism and morphotropy of the above-named compounds. Changes in the thermal stability of the nonstoichiometric phases and double chemical compounds in the series of lanthanides have been observed. The SrF2(Y,Ln)F3 systems studied give examples of the formation of phases with the highest concentrations of point defects among all the known binary fluoride systems (up to 50 at.%). The thermal stabilization effect of the nonstoichiometric phases with the fluorite structure results in the fact that the series of the two-component compositions is melted at considerably higher temperatures as compared with scandium fluoride, the most refractory single-component fluoride compound. This effect leads to formation of tysonite-type solid solutions with melting points exceeding 1500°C (mp of LaF3—the most refractory fluoride material with tysonite-type structure).  相似文献   

19.
The crystal structures, synthesis and physical properties of ruthenium hollandites ALi2Ru6O12 (A=Na, K) with a new pseudo-hexagonal structure type are described. Analogous to tetragonal hollandites, the framework is made of MO6 octahedra in double chains that share corner oxygens with each other to create interstitial tunnels. The tunnels are either hexagonal or triangular in cross-section. Magnetic susceptibilities, low temperature specific heat, and electrical resistivities are reported. The data indicate that these materials are normal, low density of states metals. This new structure type can be extended from A=Group I to A=Group II ions with the synthesis of CaLi2Ru6O12 and SrLi2Ru6O12.  相似文献   

20.
New hydrated lanthanide phthalates have been hydrothermally prepared with cerium and neodymium in different reaction media involving water or mixed water-ethanol solvent. The monohydrated Ln2(1,2-bdc)3(H2O) (Ln=Ce or Nd) and dihydrated Nd2(1,2-bdc)3(H2O)2 forms have been characterized by single-crystal analysis. Their structures consist of infinite inorganic chains of lanthanide-centered polyhedra linked to each other through the phthalate ligands in order to generate mixed organic-inorganic layered structure. The two hydrated structures differ by the number of terminal water species attached to the lanthanide cations, which induce symmetry change from a triclinic (Nd2(1,2-bdc)3(H2O)2) to an orthorhombic (Nd2(1,2-bdc)3(H2O)2) cell for neodymium whereas the cerium-based phase only exists in the monohydrated form, with two distinct symmetries (orthorhombic or triclinic). Structural comparisons with the other members of the lanthanide phthalate series with identical chemical formula are also discussed. Thermal X-ray diffraction experiment indicates that the transformation from dihydrate form into the monohydrated form does not occur during a heating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号