首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ion selective and complexing properties of 1,5-bis[2-(dioxyphosphoryl-4-methoxy)phenoxy]-3-oxapentane dihydrate H4M2 · 2H2O (I) were described. X-ray diffraction analysis for compound I was performed. The crystals are orthorhombic, a = 7.9818(16) ?, b = 30.553(6) ?, c = 9.0559(17) ?, V = 2208.5(8) ?3, Z = 4, space group Pnma, R = 0.0500 over 1372 reflections with I > 2??(I). In I, the H4M2 molecules are combined by hydrogen bonds (HB) with two crystallographically independent H2O(7) and H2O(8) molecules to give neutral H4M2 · 2H2O aggregates. The HB between the phosphoryl and hydroxyl oxygen atoms of the aggregates and the donor O(7)-H??O(8) HB give rise to a layered structure. Conclusions about the Cu(H2M2) compound structure were drawn based on the X-ray diffraction, DTA, and vibrational spectroscopy data.  相似文献   

2.
Extensive experimental studies of the Raman spectra of H2O and D2O ice in the lattice translational and OH (OD) stretching regions are reported for the first time at 88 K and from 0→6 kbar. An unambiguous transformation from ice Ih to ice IX has been observed, although previous studies suggest that a transition to ice II would have occurred. The ice Ih data are analysed in terms of various coefficients.  相似文献   

3.
Potential curves for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+ were calculated by both ab initio and semi-empirical LCAO MO SCF CI methods. The energy barrier of the symmetric double minimum potential in [H5O2]+ is very sensitive to electron correlation. At an OO distance of 2.74 Å it decreases from the HF value of 9.5 kcal/mole to about 7.0 kcal/mole. The results of the semi-empirical calculations agree well with the ab initio data as long as only relative effects are regarded. The partitioning of correlation energy into contributions of individual electron pairs is very similar for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+. In this example the proton transfer appears as a superposition of two “contracted ionic dissociation” processes. An interpretation of the behaviour of correlation during these processes is presented.  相似文献   

4.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

5.
SCF CNDO calculations were performed for species H3O+·(H2O)n·OH? where n was varied from one to three. The position of the intervening protons was changed simultaneously while the oxygens and remaining hydrogens were kept fixed. It was found that only one minimum occurs when n is one or two while an asymmetric double minimum potential is found when n is equal to three. A barrier of 10.4 kcal/mole was found.  相似文献   

6.
The ion-selective properties of 1,8-bis[2-(dihydroxyphosphinyl)phenoxy]-3,6-dioxaoctane (H4L3) have been studied and its potentiometric selectivity coefficients have been determined. New complexes [Cu(H4L3)(H2O)3][(H2L3)(H2O)] (I) and Zn(H4L3)(H2L3) · 3H2O, and Cu(H2L3) · 2(H2O) have been synthesized and characterized. The crystal and molecular structure of I has been determined by X-ray crystallography and vibrational spectroscopy. The crystals are monoclinic, a = 10.279(5) Å, b = 26.532(13) Å, c = 8.399(4) Å, β = 99.270(8)°, V = 2260.8(7) Å3, Z = 2, space group Cm, R = 0.0347 for 4325 reflections with I > 2σ(I). Ionic compound I is composed of the [Cu(H4L3)(H2O)3]2+ complex cations and [(H2L3)(H2O)]2? anions. In the cation, the Cu2+ cation located in the m plane is bound to a tetragonal pyramidal (TP) array. The equatorial plane of the TP is formed by two phosphoryl oxygen atoms of the podand (Cu(1)-O, 1.921(2) Å) and two O atoms of two water molecules (av. Cu(1)-O, 1.981(3) Å). The third water molecule is at the axial vertex of the TP at a considerably larger distance (Cu(1)-O, 2.139(3) Å). The anion is of the host-guest type. The host is the deprotonated podand (H2L3)2?, and the guest is the water molecule. The latter is bound to the terminal hydroxyl groups of two phosphoryl groups of the podand by two acceptor hydrogen bonds and to two central ether oxygen atoms of the (H2L3)2? anion by one donor bifurcated hydrogen bond. The cations and anions in the structure are linked by hydrogen bonds to form chains parallel to the c axis.  相似文献   

7.
Previous work on the determination of the photoionization threshold (Isol) of tryptophan has now been extended to indole as a solute, both in tetramethylsilane (TMSi) and H2O solvents. In TMSi, electron scavenging by N2O or photoconductivity measurements lead to the same Isol value: 4.95 ± 0.1 eV. In water, Isol is found equal to 4.35 ± 0.1 eV. From these experiments, information on the ionization mechanism, on the oxidized solute and on the solvent can be gained: (i) the scavenger electron affinity does not intervene in the energy balance providing Isol; (ii) an “effective” ionic radius of indole (1.40 Å) is estimated which suggests that the positive charge remains highly localized on the N-atom of the indole ring; (iii) a value of ?1.2 ± 0.1 eV can be deduced for Vo, the conduction band edge of water; (iiii) from the above findings, the energy gap EG of pure water, considered as a semi-conductor, would be close to 7 eV. Such a result is discussed in terms of literature data pertaining to electron ejection in pure liquid water and X-ray photoelectron spectroscopy of amorphous ice.  相似文献   

8.
A coordination compound of nickel(II) benzoate with nicotinamide [Ni(C6H5COO)2(L)2(H2O)2] (I) (L is nicotinic acid amide) is synthesized and studied by IR spectroscopy. Its crystal structure is solved by X-ray crystallography. The crystals of compound I are monoclinic: a = 7.152 Å, b = 18.266 Å, c = 10.341 Å, β = 109.24°, V = 1275.4 Å3, Z = 2, space group P21/c. Structural units of a crystal of I are centrosymmetric octahedral complex molecules. The coordination environment of the Ni atom contains two O atoms (Ni-O(1) 2.066(2) Å) and two N atoms (Ni-N(1) 2.091(2) Å) of the monodentate-coordinated benzoate anions and nicotinamide molecules, respectively, as well as two O atoms of the H2O molecules (Ni-O(1w) 2.110(2) Å).  相似文献   

9.
After hydrothermal and thermovaporous treatment of chemically pure amorphous aqueous silicic acid in solutions of NaOH and NH4OH and in water vapour it is possible, using complex thermal analysis, to detect the weight loss and heat effects corresponding to evaporation of various forms of combined water, and to estimate the heats of evaporation of these forms. From the obtained data, the following water forms have been identified: (1) at 200–300° capillary-condensed water formations of the cluster type evaporate;ΔH deh is about 8 kcal/mole H2O; (2) at 250–400°, molecules of water linked by hydrogen bonds with hydroxyl groups on the surface and in the volume of the particles;ΔH deh. is about 5 kcal/mole H2O; (3) at 350 600°, molecules of water coordinated to silicon atoms in the volume of the particles;ΔH deh is approximately 1 kcal/mole H2O. The total evaporation heat changes from 10 kcal/mole H2O when water of form 1 predominates, to 5 kcal/mole H2O when forms 2 and 3 predominate.  相似文献   

10.
Near Hartree-Fock level ab initio molecular orbital calculations on H3O+ and a minimum energy structure with θ(HOH) = 112.5° and r(OH) = 0.963 Å and an inversion barrier of 1.9 kcal/mole. By comparing these results to calculations on NH3 and H2O, where precise experimental geometries are known, we estimate the “true” geometry of isolated H3O+ to have a structure with θ(HOH) = 110-112°, r(OH) = 0.97–0.98 Å and an inversion barrier of 2–3 kcal/mole. Our prediction for the proton affinity of water is ≈ 170 kcal/mole, which is somewhat smaller than the currently accepted value.  相似文献   

11.
The first and second bond dissociation energies for H2O have been calculated in anab initio manner using a multistructure valence-bond scheme. The basis set consisted of a minimal number of non-orthogonal atomic orbitals expressed in terms of gaussian-lobe functions. The valence-bond structures considered properly described the change in the molecular system as the hydrogen atoms were individually removed to infinity. The calculated equilibrium geometry for the H2O molecule has an O-H bond length of 1.83 Bohrs and an HOH bond angle of 106.5°. With 49 valence-bond structures the energy of H2O at this geometry was ?76.0202 Hartrees. The calculated equilibrium bond length for the OH radical was 1.86 Bohrs and the energy, using the same basis set, was ?75.3875 Hartrees. After correction for zero point energies the calculated bond dissociation energies are: H2O → OH + H, D1=75.38 kcal/mole and OH → O+H, D2=54.79 kcal/mole.  相似文献   

12.
Two novel vanadium selenites {[VO(OH)(H2O)](SeO3)}4·2H2O 1 and (H3NCH2CH2NH3)[(VO)(SeO3)2] 2 were synthesized by hydrothermal method and their crystal structures were determined by single-crystal X-ray diffraction. It is characterized by inductively coupled plasma (ICP), thermogravimetric (TG) and elemental analyses. Compound 1 crystallizes in the monoclinic system, space group C2/c, a=21.2250(11) Å, b=12.6309(6) Å, c=17.0249(10) Å, β=96.830(3)°, V=4531.8(4) Å3 and Z=8, R1 [I>2σ(I)]=0.0344, wR2 [I>2σ(I)]=0.119; Compound 2 crystallizes in the monoclinic system, space group P21/c, a=9.6389(4) Å, b=6.9922(3) Å, c=15.0324(5) Å, β=102.297(2)°, V=989.90(7) Å3 and Z=4, R1 [I>2σ(I)]=0.0452, wR2 [I>2σ(I)]=0.117. {[VO(OH)(H2O)](SeO3)}4·2H2O has a 1D structure constructed from the {[VO(OH)(H2O)](SeO3)} chains. (H3NCH2CH2NH3)[(VO)(SeO3)2] has a layered structure composed of alternating VO5 and SeO3 units with protonated ethylenediamine as interlayer guest.  相似文献   

13.
The electrochemical Peltier effect was studied at a gold electrode in solutions containing some Fe(II)/Fe(III) redox couples by measuring the local temperature change in the electrode/solution interphase under controlled-potential and controlled-current polarization. Relative values of the electrochemical Peltier coefficient for the cathodic process at equilibrium potential, which is denoted by (Πc)I=0, were determined by analyzing the observed temperature change as a function of current. The values of (Πc)I=0 were found to be positive for the Fe(H2O)62+/Fe(H2O)63+ systems in HClO4 (1 M), HNO3 (1 M), H2SO4 (0.5 M), and HCl (1 M), their magnitudes being very similar in the first three acid solutions, but smaller in the HCl solution. On the other hand, a negative value of (Πc)I=0 was obtained in the case of a Fe(CN)64?/Fe(CN)63? couple in a H2SO4 (0.5 M) solution. Such a difference in the Peltier coefficient is considered to be due to the difference in the ionic species of iron involved in the electrode reaction.  相似文献   

14.
A heteronuclear germanium(IV) and copper(II) complex with 1,3-diamino-2-propanoltetraacetic acid (H5Hpdta) has been synthesized for the first time. The compound has been characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The structure of the complex [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] · 3H2O (I) has been determined by single-crystal X-ray diffraction. The crystals of I are monoclinic, a = 1 5.327(4) Å, b = 11.626(3) Å, c =21.058(3) Å, β = 96.35(2)°, V = 3729.2(2) Å3, Z = 8, space group C2/c, R1 = 0.0551 on 3090 reflections with I > 2σ(I). The structural units of the crystal of I are binuclear complex molecules [(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)] and crystal water molecules. The germanium and copper atoms are linked by the bridging oxygen atom of the deprotonated isopropanol group of the Hpdta5? ligand (Ge-O, 1.843(3) Å; Cu-O, 2.221(3) Å). The coordination spheres of the Ge and Cu atoms contain each one nitrogen atom (Ge-N, 2.090(4) Å; Cu-N, 2.000(4) Å) and two carboxyl oxygen atoms from four acetate arms of the heptadentate Hpdta5? ligand (av. Ge-O, 1.909(3) Å; Cu-O, 1.948(3) Å). The coordination polyhedron of the Ge atom is completed to a distorted octahedron by the oxygen atoms of the terminal hydroxy group (Ge-O, 1.786(3) Å) and a water molecule (Ge-O, 1.904(3)Å). The coordination polyhedron of the copper atom is completed to a prolate tetragonal pyramid (4 + 1) by the oxygen atom of a water molecule in the equatorial position (Cu-O, 1.955(4) Å) and the bridging O(11) atom (Hpdta5?) in the apical position. Binuclear molecules are linked pairwise in a head-to-head manner via double Cu-O(2) bridges to form the centrosymmetric tetranuclear supramolecule {[(H2O)(OH)Ge(μ-Hpdta)Cu(H2O)]}2. The coordination of the Cu atom is completed by the weak Cu-O(2A) contact (3.303 Å) to an asymmetrically elongated tetragonal bipyramid (4 + 1 +1). In the crystal, the complex molecules and crystal water molecules are combined by a system of hydrogen bonds into a three-dimensional framework.  相似文献   

15.
Qualitative single crystals of ??-complexes Cu(H+L)(ClO4)]ClO4 · H2O (I), Cu(H+L)(BF4)]BF4 · H2O (II), and [Cu(H+L)(H2O)]SiF6 · H2O (III) are synthesized from solutions of 3-(diallylamino)propanenitrile (L) in propanol, ethanol, and methanol-water acidified with the corresponding acid to pH 3.5?C5 and from the copper(II) salts (Cu(ClO4)2 · 6H2O, Cu(BF4)2 · 6H2O, and CuSiF6 · 4H2O) using the alternating-current electrochemical method on copper wire electrodes. The crystal structures of the complexes are determined. All compounds crystallize in the monoclinic crystal system: complexes I and II are isostructural, space group P21/n, Z = 4. For compound III, space group P21/c, Z = 8. Unit cell parameters: for I a =7.8153(3), b = 16.7824(7), c = 12.4426(5) ?, ?? = 93.410(2)°, V = 1629.1(1) ?3; for II, a = 7.6755(4), b = 16.7119(7), c = 12.3784(6) ?, ?? = 94.354(2)°, V = 1583.2(1); and for III a = 9.826(2), b = 24.009(3), c = 12.061(2) ?, ?? = 91.820(6)°, V = 2843.9(7) ?3. The trigonal pyramidal coordination of the copper atom in complexes I-III is formed by two C=C bonds of the allyl groups of H+L, the nitrile N atom of the adjacent cation of the ligand, and the O or F atom of the ClO 4 ? or BF 4 ? anions. In structure III, the apical position of the pyramid is occupied by the O atom of the water molecule, since the SiF 6 2? anion is considerably remote from the copper(I) atom. However, this anion is bound to the organic cation by hydrogen bonds F??H (2.05?C2.51 ?).  相似文献   

16.
The enthalpy of combustion of 3-nitroisoxazoline has been determined as ΔH c 298.15 =?414±0.3 kcal/mole and that of 3-nitroisoxazoline N-oxide as ΔH c 298.15 =?406.6±0.5 kcal/mole. From the values for the heats of combustion and evaporation, the standard enthalpies of formation have been calculated and the energy of the N→O bond has been evaluated at 64±3 kcal/mole.  相似文献   

17.
Thulium trifluoroacetate compounds have been synthesized, Tm(CF3COO)3 · 3H2O (I) and Tm2(CF3COO)6 · 2CF3COOH · 3H2O (II). The structure of I has been refined by the Rietveld method on the basis of the structural data for Cd(CF3COO)3 · 3H2O. The structure of II has been solved in a single-crystal X-ray diffraction study. Compound I has been studied by thermal analysis. Crystals of I and II are monoclinic: for I a = 9.062(2) Å, b = 18.678(3) Å, c = 9.687(2) Å, β = 113.93(1)°, Z = 2, space group P21/c, R 1 = 0.062; for II a = 8.560(4) Å, b = 19.866(5) Å, c = 20.813(7) Å, β = 101.69(4)°, Z = 8, space group C2/c, R 1 = 0.0392. In the molecular structure of I, thulium atoms are bonded in pairs through four bridging trifluoroacetate anions to form dimers. The coordination polyhedron of the thulium atom also includes the three O atoms of the water molecules and the O atom of the monodentate trifluoroacetate group; the coordination number of the thulium atom is eight. In the chain structure of II, there are two crystallographically independent thulium atoms with coordination numbers 8 and 9. The coordination polyhedra of the Tm(1) and Tm(2) atoms are a distorted monocapped tetragonal antiprism and a distorted tetragonal antiprism, respectively. The Tm-O bond lengths are in the range 2.28(1)–2.85(2) Å. The thulium atoms are bound into chains through carboxylate groups. These chains are linked into layers through hydrogen bonds.  相似文献   

18.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

19.
A new complex [Zn2(Ox)3]H2L · 4H2O (L = 2,2??-(1,4-butanediyl)-bis(1H-benzimidazole)) (I) has been hydrothermally synthesized and characterized by the elemental analysis, IR spectroscopy, and single crystal X-ray diffraction. It crystallizes in monoclinic space group P21/c with a = 10.108(2), b = 15.600(4), c = 9.768(2) ?, ?? = 105.289(3)·, V = 1485.7(6) ?3, Z = 4. Complex I is a 2D honeycomb-like polymer with pro-toned L and water molecules intercalating in the cavities. The luminescent spectra shows the emission peak of complex I is at 455 nm which is attributed to ligand-to-metal charge transfer.  相似文献   

20.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号