首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A differential scanning calorimetric and sorption calorimetric study of two alkyl maltosides, C8G2 and C10G2, was performed. In the dry state, C8G2 and C10G2 do not form solid crystals but undergo a glass transition upon temperature change. The glass is partly ordered and has the same lamellar structure as the liquid crystals formed by the two maltosides. To reflect the presence of the glass transition and the structure, the terms "glassy crystals" and "glassy liquid crystals" can be used. A mechanism of the relaxation of the glassy crystals based on the results of small-angle X-ray scattering experiments is proposed. Experiments on water sorption showed that the glassy crystals turn into lyotropic liquid crystals upon sorption of water at constant temperature. This isothermal glass transition can be characterized by water content and change of partial molar enthalpy of mixing of water. A method to calculate the phase diagram liquid crystals-glassy liquid crystals is proposed.  相似文献   

2.
We measure polarized OH-stretching Raman spectra of the glassy lithium chloride aqueous solutions (LiClaq solutions) and the relaxed high-density amorphous ices (HDA). The totally OH symmetric vibrational mode around 3100 cm(-1) (g(1) mode) for the glassy LiClaq solutions of 14.3 mol% and the g(1) mode for the glassy LiClaq solution of 10.0 mol% seem to be similar to the g(1) mode for HDA at high pressure and the g(1) mode for HDA at 1 atm, respectively. This indicates that the solvent state of glassy LiClaq solution relates to the state of HDA and that the attenuation of the salt effect on water is equivalent to the attenuation of the pressure effect on water. This suggests a possibility that the hydration in electrolyte aqueous solution may relate to high-density liquid water.  相似文献   

3.
The changes in macromolecular architecture that occur sequentially when a polymer is allowed to swell to saturation in a test-liquid and then evaporated from its gel-saturated state through its rubbery transition and finally down to a glassy state at virtual dryness are described in detail. The influence of molecular structure of the sorbed liquid and temperature on the kinetics of evaporation during each part of the above cycle is discussed. The relevance of these results with respect to the models proposed by polymer physicists to describe thermoreversible gelation and polymer relaxation in the glassy state is also discussed.  相似文献   

4.
A mathematical model to describe the specific volume of glassy mixtures of a polymer and a low molecular weight diluent or additive is presented. The model is based on understandable physical assumptions and relies on parameters that can be determined experimentally or estimated from methods available in the literature. The predictions of the model show good agreement with the experimental data for mixtures of four polymers with diluents that in the pure state are liquid, glassy, or crystalline. The observed negative departure from volume additivity, as defined by simple additivity of the specific volume of the pure glassy polymer and the pure amorphous diluent, is the result of the relaxation of the excess volume of the glassy mixture relative to the equilibrium state caused by mixing two components with different glass transition temperatures. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1037–1050, 1998  相似文献   

5.
Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties.  相似文献   

6.
Films of azobenzene-containing polymers were photooriented in the glassy state in such a way that the azobenzene side groups were oriented preferably perpendicular to the electric field vector. In the case of liquid crystalline polymers ,the photoinduced anisotropies generated in the glassy state were modified by thermotropic self-organization due to annealing above T(g). The conventional photoorientation process results in an oblate order. The changes in photoinduced anisotropies brought about by annealing in the liquid crystalline phase were investigated quantitatively for the first time by us for different polymer compositions and experimental conditions. Different biaxial and homeotropic orders result for liquid crystalline polymers, depending on the experimental conditions. Different polymer structures are compared and the influence of the interfaces is investigated. Orientational gradients can be induced by irradiation or annealing and are for the first time determined by the WKB (Wentzel-Kramers-Brillouin) method.  相似文献   

7.
There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.  相似文献   

8.
Tensile stress‐relaxation experiments with simultaneous measurements of Young's relaxation modulus, E, and the strain‐optical coefficient, C?, were performed on two amorphous polymers—polystyrene (PS) and polycarbonate (PC)—over a wide range of temperatures and times. Master curves of these material functions were obtained via the time‐temperature superposition principle. The value of C? of PS is positive in the glassy state at low temperature and time; then it relaxes and becomes negative and passes through a minimum in the transition zone from the glassy to rubbery state at an intermediate temperature and time and then monotonically increases with time, approaching zero at a large time. The stress‐optical coefficient of PS is calculated from the value of C?. It is positive at low temperature and time, decreases, passes through zero, becomes negative with increasing temperature and time in the transition zone from the glassy to rubbery state, and finally reaches a constant large negative value in the rubbery state. In contrast, the value of C? of PC is always positive being a constant in the glassy state and continuously relaxes to zero at high temperature and time. The value of Cσ of PC is also positive being a constant in the glassy state and increases to a constant value in the rubbery state. The obtained information on the photoelastic behavior of PS and PC is useful for calculating the residual birefringence and stresses in plastic products. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2252–2262, 2001  相似文献   

9.
《Chemical physics letters》1986,124(5):459-462
ESR of the lowest triplet state of trans-stilbene has been studied in glassy media at 77 K. This is the first report of ESR of a triplet polyene.  相似文献   

10.
Radiation-induced solid-state polymerization of cyclohexene sulfide has been investigated. Differential thermal analysis shows that this compound has a phase transition point at ?74°C and behaves as a plastic crystal in the temperature range from ?74 to ?20°C (melting point). By rapid cooling, this plastic crystal was easily supercooled, and below ?166°C a glassy crystal, i.e., a supercooled nonequilibrium state of plastic crystal, was obtained. In-source polymerization proceeded in the plastic crystalline state. Postpolymerization of glassy crystalline monomer irradiated at ?196°C occurred above ?166°C (glass transition point) during subsequent heating.  相似文献   

11.
In order to elucidate the relationship between dielectric behavior and structure in solid polymers, we studied the dielectric relaxation of stereoregular poly(methyl methacrylate) (PMMA) in the glassy state. Assuming that the extremes of molecular structure are attained in the crystal and in solution, the most probable conformation of the main chain in the glassy state is estimated for isotactic and syndiotactic PMMA in terms of conformational analysis, the unperturbed mean-square end-to-end distance in solution, and the NMR second moment in the glassy state. Under the assumption that the molecular structure varies in a limited range near the most probable conformation and that the α-methyl group rotates freely, the energy barrier for the rotation of the side group is calculated. With the calculated energy barrier, the dielectric relaxation due to the side group is interpreted fairly satisfactorily by the barrier theory of Hoffman and Lauritzen, although the width of the relaxation curve is not. The experimental result that the loss peak of syndiotactic PMMA is located at higher temperature than that of isotactic PMMA is interpreted qualitatively in terms of different conformations for the syndiotactic and isotactic chains.  相似文献   

12.
The dynamics of ethylcyclohexane are investigated by high resolution dielectric spectroscopy aiming to characterize the relevant relaxational features of this simple system in its fluid, supercooled liquid, and glassy states. The dielectric signature of structural relaxation is a primary loss peak with amplitude Deltaepsilon=0.01, and a secondary loss process is found in the glassy state. This beta relaxation is compared with a "slow" process revealed by ultrasonics and with previously found gamma and chi processes in similar materials containing the cyclohexyl group. The results suggest that this secondary process is an intramolecular mode rather than a Johari-Goldstein process, consistent with its persistence in the liquid state at slow relaxation times which exceed those of the alpha process. The dielectric activity of such a slow process requires that the dipole magnitude changes with the intramolecular transition, whereas a change in dipole direction only would be masked by the faster structural relaxation.  相似文献   

13.
Dielectric spectra of the beta relaxation in glassy and ultraviscous liquid diethyl phthalate show that its relaxation strength Delta epsilon(beta), the distribution of times, and the relaxation rate are more sensitive to temperature T in the ultraviscous liquid than in the glassy state. The Delta epsilon(beta) against temperature plot has an elbow-shaped break near T(g) of approximately 181 K, which is remarkably similar to that observed in the entropy, enthalpy, and volume against temperature plots, and in the plot of Delta epsilon(beta) against the liquid's entropy minus its 0 K value. The ratio of Delta epsilon(beta) to diethyl phthalate's entropy, after subtracting the 0 K value, is 1.08 x 10(-3) mol K/J in the glassy state at 120.4 K, which decreases slowly to 0.81 x 10(-3) mol K/J at 176 K near T(g) and thereafter rapidly increases to 1.57 x 10(-3) mol K/J at 190 K. Variation in Delta epsilon(beta) parallels the variation of the entropy. A change in the activation energy of the beta process at T>T(g) indicates that its rate is also determined by the structure of the ultraviscous liquid. Features of beta relaxation are consistent with localized motions of molecules and may not involve small-angle motions of all molecules.  相似文献   

14.
The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre‐emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water‐like density anomalies. We propose that it is the much‐discussed liquid–liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation.  相似文献   

15.
The heat capacities and the enthalpies of phase transitions of cyclohexyl esters (formate, acetate, butyrate, and valerate) in the condensed state between T =  (5 and 320) K were measured in a vacuum adiabatic calorimeter. It was found that all liquid compounds were supercooled by cooling them fromT =  300 K at a rate of (0.02 to 0.03)K · s  1and formed glasses. Crystalline phases were obtained for all esters and the residual entropies of glasses at T   0 were evaluated. The glass transition temperatures and the heat capacity jumps accompanying the glass transitions, as well as the thermodynamic parameters of fusion of crystalline phases, were determined for all the esters. The molar thermodynamic functions of the investigated compounds in the crystalline, liquid, supercooled liquid, and glassy states were obtained. The regular changes of some thermodynamic properties in the series of cyclohexyl esters are discussed.  相似文献   

16.
Ethanol was found to give a metastable crystalline phase (crystal-II) when the liquid was cooled at a moderate rate. Glassy states of liquid and of newly found crystal-II were obtained in the calorimeter cell by controlling the cooling rate of the liquid. The heat capacities of these phases as well as that of the stable crystal-I were measured by an adiabatic calorimeter in the temperature range between 14 and 300 K. The glass transition temperature Tg, the heat-capacity jump at Tg, and the residual entropy were found to be 97 K, 35.3 J K?1 mol?1, and 8.93 J K?1 mol?1 for the glassy liquid, and 97 K, 22.8 J K?1 mol?1, and 4.24 J K?1 mol?1 for the glassy crystal-II, respectively. The values for the residual entropy are referred to the third-law entropy for crystal-I.The heat capacities reported previously for the supercooled liquid by Gibson et al. and by Parks and Kelley agree well with those for the metastable crystal-II. Those of the supercooled liquid connect smoothly with those obtained for the liquid above the melting temperature. Thus, ethanol is found to be another example of a low-molecular-weight compound which shows multiple glass-transition phenomena.  相似文献   

17.
The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre‐emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water‐like density anomalies. We propose that it is the much‐discussed liquid–liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation.  相似文献   

18.
The random first-order transition theory of the dynamics of supercooled liquids is extended to treat aging phenomena in nonequilibrium structural glasses. A reformulation of the idea of "entropic droplets" in terms of libraries of local energy landscapes is introduced which treats in a uniform way the supercooled liquid (reproducing earlier results) and glassy regimes. The resulting microscopic theory of aging makes contact with the Nayaranaswamy-Moynihan-Tool nonlinear relaxation formalism and the Hodge-Scherer extrapolation of the Adam-Gibbs formula, but deviations from both approaches are predicted and shown to be consistent with experiment. The nonlinearity of glassy relaxation is shown to quantitatively correlate with liquid fragility. The residual non-Arrhenius temperature dependence of relaxation observed in quenched glasses is explained. The broadening of relaxation spectra in the nonequilibrium glass with decreasing temperature is quantitatively predicted. The theory leads to the prediction of spatially fluctuating fictive temperatures in the long-aged glassy state, which have non-Gaussian statistics. This can give rise to "ultraslow" relaxations in systems after deep quenches.  相似文献   

19.
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the corresponding experimental measurements on water. Our simulations also suggest that the Jagla potential may reproduce features of the HDA-VHDA transformations observed in glassy water upon compression and decompression. Snapshots of the system during the HDA-VHDA and HDA-LDA transformations reveal a clear segregation between LDA and HDA but not between HDA and VHDA, consistent with the possibility that LDA and HDA are separated by a first order transformation as found experimentally, whereas HDA and VHDA are not. Our results demonstrate that a system of particles with simple isotropic pair interactions, a Jagla potential with two characteristic length scales, can present polyamorphism in the glass state as well as reproducing many of the distinguishing properties of liquid water. While most isotropic pair potential models crystallize readily on simulation time scales at the low temperatures investigated here, the Jagla potential is an exception, and is therefore a promising model system for the study of glass phenomenology.  相似文献   

20.
The model of heterophase fluctuations is developed accounting frustration of the mesoscopic solidlike fluctuons. Within the framework of this model, the glass transition and polyamorphous transformations are considered. It is shown that the frustration increases the temperature range in which the heterophase liquid state exists. the upper and lower boundaries of this temperature range are determined. These boundaries separate different phase states-amorphous solid, heterophase liquid, and fluid phases. Polyamorphous liquid-liquid transitions in the liquid are investigated. Frustration can call forth continuous fluid-solid phase transformation avoiding the first- or second-order phase transition. Conditions under which the first-order phase transition fraction takes place are formulated. Two scenarios of the first-order liquid-liquid polyamorphous transformation are described. As an example the glacial phase formation and the first-order liquid-liquid phase transition in triphenyl phosphate are considered and discussed. Impact of frustration on the liquid crystallization and crystallinity of the glassy state is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号