首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, we compare near-infrared (NIR) and Raman spectroscopy for the determination of the density of linear low density polyethylene (PE) (in a pellet form). As generally known, Raman spectral features are more selective than those of NIR for most chemical samples. NIR spectroscopy has been more extensively used for the quantitative analysis of polymers, but Raman spectroscopy is the better choice as long as the problem of reproducibility of Raman measurements (especially for solid samples), mostly resulting from insufficient sample representation due to probing only localized chemical information and the sensitivity of sample placement with regard to the focal plane, can be overcome. To improve sample representation and reproducibility of Raman measurements, we have employed the wide area illumination (WAI) Raman scheme, capable of illuminating a laser onto a large sample area (28.3 mm2) for Raman spectral collection (a 6-mm laser spot with a focal length of 248 mm). Diffuse reflectance NIR spectra of PE pellets were collected using a sample moving system which allowed for the scanning of large areas. The prediction error was 0.0008 g cm−3 for Raman spectroscopy and 0.0011 g cm−3 for NIR spectroscopy. The harmonization of inherently selective Raman features and a reproducible spectral collection with correct sample representations using the WAI scheme led to an accurate determination of the density of the PE pellets.  相似文献   

2.
Fan F  Feng Z  Li C 《Chemical Society reviews》2010,39(12):4794-4801
In the past decade, UV Raman spectroscopy has become a powerful technique for the characterization of the synthesis mechanism and assembly of molecular sieves. Ultraviolet excitation avoids fluorescence that plagues visible Raman spectroscopy and concurrently enhances the Raman signal because of the short wavelength of excitation and the resonance Raman effect. The advances of UV Raman spectroscopy, UV resonance Raman spectroscopy and in situ UV Raman spectroscopy and their applications to the characterization of zeolite assembly mechanisms are provided in this tutorial review. Using UV Raman spectroscopy, the synthesis mechanism of zeolites, including the identification of primary units, assembly through key intermediates, transition metal species, and the roles of the organic templates in framework formation have been elucidated, and are discussed herein.  相似文献   

3.
Theoretical spectrograms of the vibrational spectrum of 3,3-dimethylcyclopropene were constructed and juxtaposed with the experimental Raman and IR spectrograms. The theoretical spectrograms are represented as sets of vertical lines starting from the points corresponding to the values of the vibrational frequencies calculated from the scaled quantum-mechanical (QM) force field obtained at the HF/6-31G*//HF/6-31G* level. Two theoretical Raman spectrograms were constructed. In the first case, the heights of the vertical lines correspond to the QM values of the Raman scattering activities. In the second case they represent the relative differential Raman cross-sections calculated using the QM values of Raman scattering activities. The initial vibrational mode matrix remains virtually unchanged upon scaling of the QM force constant matrix because the dispersion of the scale factor values is low. Therefore, the heights of the theoretical lines for the IR spectrogram represent the QM intensities directly. The theoretical spectrogram based on the relative differential Raman cross-sections was shown to depict the experimental Raman spectrum more adequately. This makes it possible to use the results of the corresponding QM calculations more completely and obtain well-substantiated assignments of the vibrational frequencies.  相似文献   

4.
The Raman excitation profiles of normal modes of chlorophyll a dimers in hexane exhibit sharp minima between 427 and 450 nm. In this spectral range, a non-linear relationship between the Raman intensifies and the intensity of the pulsed laser is observed. These non-linearities indicate population of lower-lying excited states of the chlorophyll a dimer. The Raman scaterring from these excited states is weaker than the rigorous resonance-enhanced Raman scattering from the ground states, which leads to the observed minima.  相似文献   

5.
Femtosecond time-resolved resonance Raman measurements were carried out to examine the relaxation process of the hydrated electron in water. The rise of the intra- and intermolecular vibrational Raman bands of the solvating water molecules was successfully time-resolved with a time resolution as high as 250 fs. The temporal intensity change of Raman bands, as well as that of luminescence background, was compared with the time evolution of the transient absorption signal. It was found that (1) the Raman and luminescence signals exhibited the same temporal behavior, (2) the rise time of the Raman bands is faster than the appearance of the equilibrated hydrated electron, indicating that the precursor state also gives rise to resonance Raman signals, and (3) the rise of the transient Raman band is slower than that of the transient absorption at the probe wavelength of 800 nm. Because it has been shown that the Raman intensity enhancement arises from the resonance with the s --> p transition, fact 2 implies that the precursor state is the nonequilibrated s-state electron. The delayed rise of the Raman signal compared to the absorption was explained in terms of the temporal change of the resonance condition. In very early time when the absorption is largely red-shifted, the probe at 800 nm is resonant with the high energy part of the absorption that provides little resonance Raman enhancement. This explanation was consistent with the probe wavelength dependence of the temporal behavior of the Raman signal: the Raman bands measured with the higher energy probe (600 nm) rose even more slowly. The resonance Raman signal in the anti-Stokes side was also examined, but no anti-Stokes band was observable. It suggests that the temperature increase of the solvation structure around the nonequilibrated hydrated electron is less than 100 K.  相似文献   

6.
The typically weak cross-sections characteristic of Raman processes has historically limited their use in atmospheric remote sensing to nighttime application. However, with advances in instrumentation and techniques, it is now possible to apply Raman lidar to the monitoring of atmospheric water vapor, aerosols and clouds throughout the diurnal cycle. Upper tropospheric and lower stratospheric measurements of water vapor using Raman lidar are also possible but are limited to nighttime and require long integration times. However, boundary layer studies of water vapor variability can now be performed with high temporal and spatial resolution. This paper will review the current state-of-the-art of Raman lidar for high-resolution measurements of the atmospheric water vapor, aerosol and cloud fields. In particular, we describe the use of Raman lidar for mapping the vertical distribution and variability of atmospheric water vapor, aerosols and clouds throughout the evolution of dynamic meteorological events. The ability of Raman lidar to detect and characterize water in the region of the tropopause and the importance of high-altitude water vapor for climate-related studies and meteorological satellite performance are discussed.  相似文献   

7.
is shown that the combined method for calculating the Raman tensor elements suggested earlier [1, 2] may be extended to calculations of the intensities of second-order Raman bands (overtones and combinations). The behavior of the intensities of the first- and second-order Raman bands is studied in a wide range of frequencies of incident light, including the resonance region. The resulting equations for the Raman scattering tensor elements are convenient from computational viewpoint; this is especially important for the intermediate frequencies, which are most difficult for calculations. Translated fromZhurnal Strukturnoi Khimii, Vol. 38, No. 3, pp. 465–469, May–June, 1997.  相似文献   

8.
Raman microspectroscopy was applied for an in situ localization of the malaria pigment hemozoin in Plasmodium falciparum-infected erythrocytes. The Raman spectra (lambdaexc=633 nm) of hemozoin show very intense signals with a very good signal-to-noise ratio. These in situ Raman signals of hemozoin were compared to Raman spectra of extracted hemozoin, of the synthetic analogue beta-hematin, and of hematin and hemin. beta-Hematin was synthesized according to the acid-catalyzed dehydration of hematin and the anhydrous dehydrohalogenation of hemin which lead to good crystals with lengths of about 5-30 microm. The Raman spectra (lambdaexc=1064 nm) of hemozoin and beta-hematin show almost identical behaviors, while some low wavenumber modes might be used to distinguish between the morphology of differently synthesized beta-hematin samples. The intensity pattern of the resonance Raman spectra (lambdaexc=568 nm) of hemozoin and beta-hematin differ significantly from those of hematin and hemin. The most striking difference is an additional band at 1655 cm(-1) which was only observed in the spectra of hemozoin and beta-hematin and cannot be seen in the spectra of hematin and hemin. Raman spectra of the beta-hematin dimer were calculated ab initio (DFT) for the first time and used for an assignment of the experimentally derived Raman bands. The calculated atomic displacements provide valuable insight into the most important molecular vibrations of the hemozoin dimer. With help from these DFT calculations, it was possible to assign the Raman band at 1655 cm(-1) to a mode located at the propionic acid side chain, which links the hemozoin dimers to each other. The Raman band at 1568 cm(-1), which has been shown to be influenced by an attachment of the antimalarial drug chloroquine in an earlier study, could be assigned to a C=C stretching mode spread across one of the porphyrin rings and is therefore expected to be influenced by a pi-pi-stacking to the drug.  相似文献   

9.
The FT-IR and Raman spectroscopic analysis of a red powder found in a chest from an officer's cabin during the excavation of the wreck of the 18th Century frigate HMS Pandora have confirmed that the pigment is cinnabar, mercury(II) sulphide. Weaker signals in the Raman spectrum are assignable to a proteinaceous material, such as collagen, typical of a degraded vellum or parchment. Comparison of the Raman spectra with that of a pigmented seal from a 1786 Lieutenant's commission demonstrated that the beeswax component of the seal was not observable.  相似文献   

10.
The relationship between the distortion of polyene chains from planarity and the Raman activity of the in-phase CH out-of-plane wag is examined by performing density functional theory calculations. The vibrational wavenumbers, vibrational modes, Raman activities and infrared absorption intensities of several oligoene (or polyene) molecules are calculated for model structures having various kinds of distortion around the CC double and/or single bond(s). The results of calculations show that the molecular distortion induces the Raman activity of the in-phase CH out-of-plane wag which should be Raman-inactive for the planar structure. The Raman activity of the in-phase CH out-of-plane wag is particularly enhanced when the molecule is uniformly helical. The origin of a weak Raman band at about 1010 cm−1 of trans-polyacetylene is discussed on the basis of the calculated results.  相似文献   

11.
It is shown that the underpotential deposition (UPD) and dissolution of monolayers of Pb and Tl onto Ag surfaces roughened in a controlled oxidation-reduction cycle produces a Ag surface which shows diminished surface enhanced Raman scattering (DSERS). Significantly enhanced Raman spectra can still be obtained from electrodes covered by complete UPD and overpotential deposited (OPD) layers of the metals. Correct choice of electrolytes for the UPD of the metal reduces the loss of enhanced Raman scattering; chloride ions, constituents of many electrolytes used in the investigation of surface enhanced Raman scattering (SERS), are shown to be especially active in causing the loss of SERS.  相似文献   

12.
凌曦  张锦* 《物理化学学报》2012,28(10):2355-2362
利用石墨烯增强拉曼散射效应可以获得与石墨烯接触的某些分子的拉曼增强信号, 并且对于不同的分子或振动模, 其拉曼增强因子不同. 根据这一特征, 本工作利用拉曼光谱技术对石墨烯表面上酞菁铅(PbPc)分子Langmuir-Blodgett (LB)膜在退火过程中吸附构型的变化进行了跟踪研究. 发现随着退火温度的升高, 石墨烯表面上PbPc分子的拉曼信号经历了一个先增强后减弱的过程, 在升华温度点附近强度达到最大, 表明PbPc发生了由直立向平躺取向的转变; 同时, 在PbPc分子升华温度点附近, 由于对称性破坏导致散射截面低的振动模出现, 并且该振动模强度随着退火温度的进一步升高而增强, 表明非平面的PbPc分子受石墨烯π-π相互作用的影响而形变加剧, 向平面结构转变; 在更高的退火温度下, 则出现一些不属于PbPc分子的拉曼振动峰, 表明PbPc分子在石墨烯表面由Pb(II)被还原成Pb(0).  相似文献   

13.
Surface-enhanced Raman scattering (SERS) has been widely reported to improve the sensitivity of Raman spectra. Ordinarily, the laser is focused on the sample to measure the Raman spectrum. The size of the focused light spot is comparable with that of micro-nano structures, and the number of micro-nano structures contained in the light spot area (defined as duty cycle) will severely affect the spectrum intensity. In this study, flower-like silver nanostructures were fabricated with a soft lyotropic liquid crystal template in order to investigate the effect of duty cycle. They were observed under a scanning electron microscope, and their spectrum enhancement factor was computed with the obtained Raman spectrum. Then, their duty cycles were measured using a SERS substrate at different locations. A formula was derived to represent the relation between the duty cycle of the nanoflowers and the Raman spectral intensity. This work could promote the actual applications of SERS in high-sensitivity spectrum testing.  相似文献   

14.
This study concentrates on the temperature dependence of the Raman intensities for the lattice modes in ammonium halides (NH(4)Cl and NH(4)Br) close to phase transitions. We predict their intensities using the results of a shell model for the Raman polarizability within the framework of an Ising pseudospin-phonon coupled model. From our observed Raman intensities of those phonon modes studied here, we extract the values of the critical exponent for the order parameter in these crystalline systems. The exponent values indicate that the Raman intensities show a logarithmic divergence at higher pressures in NH(4)Cl, whereas they predict a lambda-type phase transition at zero pressure in NH(4)Br.  相似文献   

15.
Resonance Raman spectroscopy is a powerful tool to investigate flavins and flavoproteins, and a good understanding of the flavin vibrational normal modes is essential for the interpretation of the Raman spectra. Isotopic labeling is the most effective tool for the assignment of vibrational normal modes, but such studies have been limited to labeling of rings II and III of the flavin isoalloxazine ring. In this paper, we report the resonance and pre-resonance Raman spectra of flavin mononucleotide (FMN) and its N5-methyl neutral radical semiquinone (5-CH 3FMN(*)), of which the 8-methyl group of ring I has been deuterated. The experiments indicate that the Raman bands in the low-frequency region are the most sensitive to 8-methyl deuteration. Density functional theory (DFT) calculations have been performed on lumiflavin to predict the isotope shifts, which are used to assign the calculated normal modes to the Raman bands of FMN. A first assignment of the low-frequency Raman bands on the basis of isotope shifts is proposed. Partial deuteration of the 8-methyl group reveals that the changes in the Raman spectra do not always occur gradually. These observations are reproduced by the DFT calculations, which provide detailed insight into the underlying modifications of the normal modes that are responsible for the changes in the Raman spectra. Two types of isotopic shift patterns are observed: either the frequency of the normal mode but not its composition changes or the composition of the normal mode changes, which then appears at a new frequency. The DFT calculations also reveal that the effect of H/D-exchange in the 8-methyl group on the composition of the vibrational normal modes is affected by the position of the exchanged hydrogen, i.e., whether it is in or out of the isoalloxazine plane.  相似文献   

16.
Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.  相似文献   

17.
Coumarin and hydrocoumarin adsorbed on silver island film were investigated by means of surface enhanced Raman spectroscopy. Polarized Raman spectra of the compounds were recorded and vibrational assignments for some characteristic Raman bands are given. The comparison of these spectra allows conclusions about the orientation of the molecule on the surface.  相似文献   

18.
Confocal Raman microspectroscopy is a promising technique which enables measuring the molecular composition of the skin layers, non-destructively and without extrinsic markers. The Raman approach is increasingly used in skin research but with various experimental conditions. In addition to the different skin types, one of the varying parameters is the wavelength of laser excitation. This parameter contributes strongly in the skin Raman response. The present work aimed to evaluate this effect for 3 different wavelengths, 532, 633 and 785 nm, on pig ear skin models. The Raman signal was assessed in the spectral fingerprint region. According to the Raman response for stability, repeatability, variability and fluorescence contribution, the 785 nm excitation wavelength was shown to be the most suitable for epidermis depth profiling in the fingerprint region.  相似文献   

19.
Two adsorbate forms of the monothiocyanate complex of chromium ion on the silver electrode are identified in the surface enhanced Raman scattering. The spectroscopic, especially the electronic, properties of these two forms under different applied voltages on the electrode and under both 632.8 and 514.5 nm excitations are studied by the bond force constants (bond orders) and the bond polarizability derivatives which are retrieved from the Raman intensities by an algorithm developed by Wu and co-workers. The work shows the potential of this approach to the surface enhanced Raman scattering and other fields like resonance Raman that involve vibronic coupling.  相似文献   

20.
Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (<6 cm (-1)) of the major Stokes modes were observed between the two modalities. We show that the Raman and SERS spectra of penetratin, a cell-penetrating peptide oligomer, can be comprised quite reliably from the spectra of its constituent aromatic amino acids except in the backbone regions where the spectral intensities are critically dependent on the length and conformations of the probed molecules. From this study we conclude that, together with protein backbone groups, aromatic amino acid residues provide the overwhelmingly dominant features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号