首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sum-frequency vibrational spectroscopy in the OH stretch region was employed to study structures of water/alpha-Al2O3 (0001) interfaces at different pH values. Observed spectra indicate that protonation and deprotonation of the alumina surface dominate at low and high pH, respectively, with the interface positively and negatively charged accordingly. The point of zero charge (pzc) appears at pH approximately = 6.3, which is close to the values obtained from streaming potential and second-harmonic generation studies. It is significantly lower than the pzc of alumina powder. The result can be understood from the pK values of protonation and deprotonation at the water/alpha-Al2O3 (0001) interface. The pzc of amorphous alumina was found to be similar to that of powder alumina.  相似文献   

2.
Second harmonic generation (SHG) spectroscopy was used to characterize the pH-dependent electrostatic charging behavior of (0001) and (102) crystallographic surfaces of corundum (alpha-Al2O3) single-crystal substrates. The pH value of the point of zero charge (pH(pzc)) for each surface was determined by monitoring the SH response during three consecutive pH titrations conducted with 1, 10, and 100 mM NaNO3 carbonate-free aqueous solutions. The crossing point of the three titration curves, which corresponds to the pH(pzc), occurs at pH 4.1 +/- 0.4 for the (0001) surface and pH 5.2 +/- 0.4 for the (102) surface. SHG measurements that were recorded as a function of NaNO3 concentration at fixed pH values were found to corroborate the pH(pzc) values identified in the pH titrations. A comparison of the SHG results with surface protonation constants calculated using a simple electrostatic model suggests that surface relaxation and bonding changes resulting from surface hydration do not account for differences between experimental observations and model predictions. The measured pH(pzc) values for the alpha-Al2O3 single-crystal surfaces are significantly more acidic than published values for Al-(hydr)oxide particles which typically range from pH 8 to 10. This discrepancy suggests that the charging behavior of Al-(hydr)oxide particles is determined by surface sites associated with defects assuming that differences in surface acidity reflect differences in the coordination environment and local structure of the potential-determining surface groups.  相似文献   

3.
The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H2O ice/water and D2O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D2O ice particles in water at 3.5°C containing 10−3 M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D2O ice and H2O ice, determined by changes in pH of 10−4 M NaCl aqueous solution at 0.5°C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 ± 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried out with care, both the zeta potential, measured with a precise ZetaPlus meter, and ΔpH values (a measure of surface charge) vs pH were significantly scattered, and the origin of dissemination of the data points was not established. Differently charged ice particles and not fully equilibrium conditions at the ice/water interface may have been responsible for the dissemination of the data.  相似文献   

4.
Understanding the interaction of water with metal oxide surfaces is important to a diverse array of fields and is essential to the interpretation of surface charging and ion adsorption behavior. High-resolution specular X-ray reflectivity was used to determine the termination of and water adsorption on the alpha-Al2O3 (012)-aqueous solution interface. Interference features in the reflectivity data were used to identify the likely termination, consisting of a full Al2O3 layer plus an additional oxygen layer that completes the coordination shell of the upper aluminum site. This was further investigated through a model-independent inversion of the data using an error correction algorithm, which also revealed that there are two sites of adsorbed water above the surface. Characteristics of these two water sites were quantified through a model-dependent structural refinement, which also revealed additional layering in the interfacial water that gradually decays toward disordered bulk water away from the surface. Although the termination observed in this study differs from that assumed in past studies of surface charging, the density of key surface functional groups is unchanged, and thus, predictions of surface charging behavior are unchanged. As the pH(pzc) of this surface has yet to be modeled accurately, a full 3-dimensional surface structural analysis based on the termination observed in this study is needed so that the effects of surface functional group bond length changes on the pK(a) values can be incorporated. Consideration of the termination and sites of water adsorption suggest that singly coordinated oxygen groups will be the primary sites of ion adsorption on this surface.  相似文献   

5.
The electric double layer (EDL) developed at the interface of anatase in contact with aqueous electrolyte solutions was investigated at 25 °C. Potentiometric titrations (PT), measurements of the electrophoretic mobility (EM) in suspensions, and streaming potential (SP) measurements were taken. The surface charge over a wide pH range (ca. 3–10) and the point of zero charge (pzc = 6.3 ± 0.1) of anatase was easily determined by means of the suspension titration curve and the blank one, obtained at a single ionic strength value. Streaming potential measurements were conducted in anatase particles appropriately packed to form plugs. Two different plugs were prepared differing in the degree of particles' packing and, consequently, in the respective porosities. It was found that surface conductivity is lower at higher packing (lower porosity), because of the reduction of the total surface area in contact with the electrolyte. Moreover, it was found that the surface conductivity of the anatase samples increased at pH values away from pzc, while the mobility of the counter ions behind the shear plane decreased. This trend was attributed to the increase of the absolute surface charge. This increase caused an increase in the amount of the counter ions and, therefore, in the conductivity due to these ions. On the other hand, stronger electrostatic interactions between the surface of the solid and the counter ions reduced their mobility. The packing density of the anatase particles in the respective plugs, affected the values of ζ‐potential calculated from SP measurements when the effect of surface conductivity was neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The adsorption of polyvinylimidazole (PVI) onto kaolinite from aqueous solutions has been investigated systematically as a function of parameters such as calcination temperature of kaolinite, pH, ionic strength, and temperature. According to the experimental results, the adsorption of PVI increases with pH from 8.50 to 11.50, temperature from 25 to 55 degrees C, and ionic strength from 0 to 0.1 mol L(-1). The kaolinite sample calcined at 600 degrees C has a maximum adsorption capacity. Adsorption isotherms of PVI onto kaolinite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. Furthermore, the zeta potentials of kaolinite suspensions have been measured in aqueous solutions of different PVI concentrations and pH. From the experimental results, (i) pH strongly alters the zeta potential of kaolinite; (ii) kaolinite has an isoelectric point at about pH 2.35 in water and about pH 8.75 in 249.9 ppm PVI concentration; (iii) PVI changes the interface charge from negative to positive for kaolinite. The study of temperature effect has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) has shown that kaolinite can be used for adsorption of PVI from aqueous solutions.  相似文献   

7.
The adsorption of bovine serum albumin (BSA) in a planar poly(acrylic acid) (PAA) brush layer has been studied by fixed-angle optical reflectometry. The influence of polymer length, grafting density, and salt concentration is studied as a function of pH. The results are compared with predictions of an analytical polyelectrolyte brush model, which incorporates charge regulation and excluded volume interactions. A maximum in adsorption is found near the point of zero charge (pzc) of the protein. At the maximum, BSA accumulates in a PAA brush to at least 30 vol %. Substantial adsorption continues above the pzc, that is, in the pH range where a net negatively charged protein adsorbs into a negatively charged brush layer, up to a critical pH value. This critical pH value decreases with increasing ionic strength. The adsorbed amount increases strongly with both increasing PAA chain length and increasing grafting density. Experimental data compare well with the analytical model without having to include a nonhomogeneous charge distribution on the protein surface. Instead, charge regulation, which implies that the protein adjusts its charge due to the negative electrostatic potential in the brush, plays an important role in the interpretation of the adsorbed amounts. Together with nonelectrostatic interactions, it explains the significant protein adsorption above the pzc.  相似文献   

8.
The biosorption of nickel(II) and copper(II) ions from aqueous solution by dried Streptomyces coelicolor A3(2) was studied as a function of concentration, pH and temperature. The optimum pH range for nickel and copper uptake was 8.0 and 5.0, respectively. At the optimal conditions, metal ion uptake was increased as the initial metal ion concentration increased up to 250 mg l(-1). At 250 mg l(-1) copper(II) ion uptake was 21.8% whereas nickel(II) ion uptake was found to be as high as 7.3% compared to those reported earlier in the literature. Metal ion uptake experiments were carried out at different temperatures where the best ion uptake was found to be at 25 degrees C. The characteristics of the adsorption process were investigated using Scatchard analysis at 25 degrees C. Scatchard analysis of the equilibrium binding data for metal ions on S. coelicolor A3(2) gave rise to a linear plot, indicating that the Langmuir model could be applied. However, for nickel(II) ion, divergence from the Scatchard plot was evident, consistent with the participation of secondary equilibrium effects in the adsorption process. Adsorption behaviour of nickel(II) and copper(II) ions on the S. coelicolor A3(2) can be expressed by both the Langmuir and Freundlich isotherms. The adsorption data with respect to both metals provide an excellent fit to the Freundlich isotherm. However, when the Langmuir isotherm model was applied to these data, a good fit was obtained for the copper adsorption only and not for nickel(II) ion.  相似文献   

9.
Mechanism of adsorption of Zn(II) and Cd(II) ions at the TiO2 (anatase)/electrolyte interface has been studied by different experimental techniques (potentiometric titration, microelectrophoresis and adsorption measurements of zinc and cadmium species). It was found that the point of zero charge (pzc) of anatase (pH =5.8) was shifted to the lower pH values with increasing concentrations of Zn(II) or Cd(Il) ions. The surface charge of anatase in the presence of Zn(II) and Cd(II) for pH > pHpzc was higher than that observed for original sample in NaClO4 solutions only. Due to low coverage of anatase surface with Zn(II) or Cd(II) species almost no shift of the isoelectric point (iep) or charge reversal were observed. Adsorption density vs. pH plots for both Zn(Il) or Cd(II) showed, typical for multivalent ions, presence of “adsorption edge.”  相似文献   

10.
We have investigated the electrochemical interface between diamond electrodes and aqueous electrolytes using electrochemical techniques such as cyclic voltammetry and ac impedance spectroscopy. High-quality CVD-grown boron-doped polycrystalline diamond electrodes and IIa single crystalline natural diamond electrodes have been used in this study. In the case of hydrogen-terminated diamond electrodes, the electrochemical interface is dominated by the electrochemical double layer. Frequency-dependent impedance spectroscopy reveals a potential regime in which the contribution of ion adsorption becomes relevant. We have conducted experiments to evaluate the effect of pH and ionic strength on the double layer. Our results suggest that only ions resulting from water auto-dissociation, i.e., hydroxide and hydronium ions, are responsible for ion adsorption and, thus, able to modify the charge at the double layer. In contrast, no effect of the adsorption of several dissolved ions (such as Na+, K+, Cl-) has been observed On the basis of the electrochemical characterization of H-terminated diamond surfaces, we also discuss the phenomenon of the surface conductivity in diamond, as well as the pH sensitivity of the diamond surface. The influence of the O2/OH- and H2/H3O+ redox couples on the origin of the surface conductivity is discussed.  相似文献   

11.
Pt supported on alpha-Al2O3, gamma-Al2O3 and SiO2 pre-modified with cinchonidine gives over 50% ee in the hydrogenation of methyl pyruvate to methyl lactate using gas phase reactants at 40 degrees C giving the first clear observation of high enantioselection at the gas/solid interface.  相似文献   

12.
The mechanisms of eight anionic polyelectrolytes stabilizing colloidal sized alpha-Al(2)O(3), pure ZrO(2), and Y(2)O(3)-doped ZrO(2) particles in aqueous solution are discussed. The polyelectrolytes studied were the Na(+) and NH(4)(+) salts of polyacrylic acid and polymethacrylic acid having different molecular weights. The particle-dispersant interactions were studied by measuring adsorption isotherms, particle size, thickness of adsorbed layer, and zeta potentials by elektrokinetic sonic analysis at different powder volume fractions (straight phi=0.01-0.3), pH, and electrolyte (KCl) content. The dissociation of the polyelectrolytes was studied by potentiometric titrations. The dissociation constant of the polymethacrylates was found to be 0.6 pH unit higher than that for the polyacrylates. High-affinity adsorption isotherms were observed over the pH range when the polyelectrolytes were fully ionized. The results show good correlation between adsorption isotherms and zeta potential data in systems of dispersed, dilute alumina particles. When particles and polymers were of equal charge (the same sign of charge) the polymer shell was thicker. At higher volume fractions (straight phi=0.3), and when alumina particles/added ammonium polyelectrolyte were of equal charge, a maximum in the absolute value of zeta potential resulted. Due to adsorption all the anionic polyelectrolytes studied provided electrosteric stabilization of the alpha-Al(2)O(3), and Y(2)O(3)-doped ZrO(2) suspensions by enhancing the zeta potential to 40 mV or over and by shifting the isoelectric point to lower pH, the low-molecular-weight polyelectrolytes decreasing the isoelectric point more than the polyelectrolytes having higher molecular weight. The polyelectrolytes studied failed to stabilize pure monoclinic ZrO(2) particles. Due to the shortness of the chain of polyelectrolytes studied, no bridging was observed between oppositely charged polyelectrolyte/alumina particles. Copyright 2000 Academic Press.  相似文献   

13.
14.
The importance of substrate chemistry and structure on supported phospholipid bilayer design and functionality is only recently being recognized. Our goal is to investigate systematically the substrate-dependence of phospholipid adsorption with an emphasis on oxide surface chemistry and to determine the dominant controlling forces. We obtained bulk adsorption isotherms at 55 degrees C for dipalmitoylphosphatidylcholine (DPPC) at pH values of 5.0, 7.2, and 9.0 and at two ionic strengths with and without Ca(2+), on quartz (alpha-SiO(2)), rutile (alpha-TiO(2)), and corundum (alpha-Al(2)O(3)), which represent a wide a range of points of zero charge (PZC). Adsorption was strongly oxide- and pH-dependent. At pH 5.0, adsorption increased as quartz < rutile approximately corundum, while at pH 7.2 and 9.0, the trend was quartz approximately rutile < corundum. Adsorption decreased with increasing pH (increasing negative surface charge), although adsorption occurred even at pH > or = PZC of the oxides. These trends indicate that adsorption is controlled by attractive van der Waals forces and further modified by electrostatic interactions of oxide surface sites with the negatively charged phosphate ester (-R(PO(4)-)R'-) portion of the DPPC headgroup. Also, the maximum observed adsorption on negatively charged oxide surfaces corresponded to roughly two bilayers, whereas significantly higher adsorption of up to four bilayers occurred on positively charged surfaces. Calcium ions promote adsorption beyond a second bilayer, regardless of the sign of oxide surface charge. We develop a conceptual model for the structure of the electric double layer to explain these observations.  相似文献   

15.
A novel ion exchanger based on double hydrous oxide (Fe2O3Al2O3xH2O) was obtained by the original sol-gel method from easily available and cheap raw materials and employed for adsorption of F-, Cl-, Br-, and BrO-3 from simultaneous solutions. Adsorbent was characterized by potentiometric titration, zeta-potential, and poremetrical characteristics. A technologically attractive pH effect of F-, Br-, and BrO-3 sorption on the investigated double hydroxide of Fe and Al, which is capable of working in the pH range 3 to 8.5, was observed. Kinetic data on fluoride and bromide sorption fit well the pseudo-second-order model. Isotherms of fluoride, bromide, chlorine, and bromate ion sorption on Fe2O3Al2O3xH2O were obtained at pH 4. The isotherm of F- sorption fit well the Langmuir model; sorption affinity (K=0.52 L/mg) and sorption capacity (90 mg F/g) were high. In the competitive adsorption of bromide and bromate, bromide dominated at equilibrium concentrations of the ions >40 mg/L. The mechanism of fluoride adsorption to the surface of the model cluster of the sorbent synthesized and the geometry of the cluster itself were modeled with the HyperChem7 program using the PM3 method.  相似文献   

16.
The acid-base properties of synthetically prepared and well-characterized hydroxyapatite (HAP) in contact with KNO3 solutions were investigated at 25 degrees C, through potentiometric titrations, zeta-potential measurements, and surface complex modeling. Aliquots of suspension were withdrawn every 0.5 pH unit during the titration procedure and analyzed for calcium and phosphate. It was found that, even for rapid titration experiments, a remarkable amount of H+ ions (H+dissol.) is consumed in the bulk solution in reacting with species coming from the dissolution of HAP. These H+ ions must be taken into account in the H+ mass balance, in order for true value for the point of zero charge (pzc=6.5+/-0.2) and consequently true value for the surface charge (sigma0) to be obtained. Besides the conventional potentiometric titration technique, it was found that pzc may be determined much more easily as the intersection point of the suspension titration curve and the blank one modified to include the amount of H+dissol. obtained at one ionic strength. Finally, a surface complexation model was proposed for the development of surface charge. Experimental data were satisfactorily fitted by using the value of 4.2 F m-2 for the capacitance.  相似文献   

17.
Acid mine drainage (AMD) has long been a significant environmental problem resulting from the microbial oxidation of iron pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. The main objective of this study was to remove metal ions [Fe(II), Fe(III), Mn(II), Zn(II)] from AMD using lignite, a low-cost adsorbent. The lignite sorbent was utilized for the sorption of ferrous, ferric, manganese, zinc, and calcium ions in aqueous solutions. Studies were performed at different pH to find optimum pH. Equilibrium isotherms were determined to assess the maximum adsorption capacity of lignite for different metal ions. Sorption capacities were compared in single, binary, ternary, and multicomponent systems. The sorption data are correlated with Freundlich and Langmuir isotherms in each system. Both Freundlich and Langmuir isotherms fit the data reasonably well in terms of regression coefficients. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The maximum lignite adsorption capacities at 25 degrees C were 34.22, 25.84, and 11.90 mg/g for Fe(II), Mn(II), and Fe(III), respectively. Adsorption of Fe(2+) (24.70 mg/g at 10 degrees C and 46.46 mg/g at 40 degrees C) increased with increased temperature, while Mn(2+) adsorption (28.11 mg/g at 10 degrees C and 7.70 mg/g at 40 degrees C) decreased with increased temperature.  相似文献   

18.
The surface electrochemical properties of alumina based ceramic microfiltration membranes were studied by measuring electroosmotic rates and surface charge densities obtained from potentiometric titrations. The rate of electroosmosis, which determines the zeta-potential, was measured on the membrane itself, whereas the surface charge was titrated on a suspension obtained by crushing of the membrane. The zeta-potential was measured in the presence of salts including NaCl, CaCl2 and Na2SO4, for a wide range of pH values (4–9) at ionic strengths of 0.01 and 0.001 M. The pH value of the isoelectric point (iep) show a specific adsorption of SO42− and Ca2+ ions onto the membrane surface. The iep in NaCl solutions occurs at pH 4.7 ± 0.1. The low iep is due to the large amount of silicium oxide in the membrane. The surface charge density is relatively high with respect to the low values of zeta-potentials. The point of zero charge pH(pzc) determined from surface charge and pH profiles occurs at pH 8.2 ± 0.1 in NaCl solution. The pH(pzc) value was also determined by two ‘addition’ methods. Similar pH(pzc) values were obtained. The difference between the pH(pzc) and pH(iep) may be correlated to a loss of acidity that is due to using crushed-membrane powder to perform potentiometric measurements.  相似文献   

19.
Employing silver nanoparticles from a recently developed synthesis [Evanoff, D. D.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948] and a well-studied probe molecule, p-aminothiophenol, we follow changes at the surface of the particles during the conditioning and eventually the catalytic production of hydrogen from water using strongly reducing radicals. Injection of electrons into the particles causes pronounced variations in the intensity of the surface enhanced Raman scattering (SERS) spectrum of the probe molecule. These spectral changes are caused by changes in the Fermi-level energy that are in turn caused by changes in the silver ion concentrations or in the pH, or by changes in electron density in the particle. This correlation highlights the effect of the chemical potential on the SERS enhancement at the end of the particles synthesis. The intensity of the SERS spectra increases in the presence of the silver ions when excitation at 514 nm is utilized. When the Ag(+) ions in the colloidal suspension are completely reduced by the radicals and the particles operate in the catalytic mode, the SERS spectrum is too weak to record, but it can reversibly be recovered upon the addition of Ag(+). The effect of pH on the SERS intensity is similar in nature to that of the silver ions but is complicated by the pKa of the aminothiol and the point of zero charge (pzc) of the particles. It is hypothesized that as the particles cross the pzc (around neutral pH) the electrostatic interaction between the protonated amine headgroup of the probe and the positively charged surface increases the density of probe molecules in the perpendicular orientation at the expense of a competing species. This conversion results in enhanced SERS signals and is observable during the preconditioning stage of the particles. Indeed, adsorption isotherms of the probe indicate the presence of two species. In analogous previous observations these two species have been attributed to perpendicular and flat adsorption orientations of the deprotonated probe molecule relative to the particle surface. However, preliminary density functional calculations on relevant prototypes raise the possibility that the two species may be the probe molecule and a cationic form produced by charge transfer in the ground state from the chemisorbed probe to the metal. These two forms of the probe have differing electronic structures and vibrational frequencies, with perhaps differing orientations relative to the surface. Whichever is the correct interpretation, a neutral molecule in a flat orientation or a radical cation, this species is easier to replace than the other in competitive adsorption by ethanethiol.  相似文献   

20.
Adsorption of fluoride ions onto carbonaceous materials   总被引:9,自引:0,他引:9  
The characteristics of fluoride ion adsorption onto carbonaceous materials were derived as adsorption isotherms at different temperatures and in different pH solutions. The fluoride ion was adsorbed into pores in carbonaceous materials produced from wood; the larger the specific surface area, the more fluoride ions adsorbed. Bone char was the most effective adsorbent. The composition of bone char includes calcium phosphate, calcium carbonate, and so on. This suggests that the phosphate ion in bone char was exchanged with a fluoride ion. Moreover, the mechanism of fluoride ion adsorption onto bone char is clearly chemical in nature because the amount of fluoride ion adsorbed onto bone char increased with increasing temperature and decreasing pH. The amount of fluoride ion adsorbed onto bone char was also shown to depend on the concentration of sodium chloride in solution because of the "salting-out" effect. The adsorption of fluoride ion onto bone char is endothermic. Bone char can be utilized to remove fluoride ions from drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号