首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is a {d, d+k}-graph, if one vertex has degree d+k and the remaining vertices of G have degree d. In the special case of k = 0, the graph G is d-regular. Let k, p ⩾ 0 and d, n ⩾ 1 be integers such that n and p are of the same parity. If G is a connected {d, d+k{-graph of order n without a matching M of size 2|M| = np, then we show in this paper the following: If d = 2, then k ⩾ 2(p + 2) and
(i)  nk + p + 6.
If d ⩾ 3 is odd and t an integer with 1 ⩽ tp + 2, then
(ii)  nd + k + 1 for kd(p + 2)
(iii)  nd(p + 3) + 2t + 1 for d(p + 2 −t) + tkd(p + 3 −t) + t − 3
(iv)  nd(p + 3) + 2p + 7 for kp.
If d ⩾ 4 is even, then
(v)  nd + k + 2 − η for kd(p + 3) + p + 4 + η
(vi)  nd + k + p + 2 − 2t = d(p + 4) + p + 6 for k = d(p + 3) + 4 + 2t and p ⩾ 1
(vii)  nd + k + p + 4 for d(p + 2) ⩽ kd(p + 3) + 2
(viii)  nd(p + 3) + p + 4 for kd(p + 2) − 2, where 0 ⩽ t ⩽ 1/2p − 1 and η = 0 for even p and 0 ⩽ t ⩽ 1/2(p − 1) and η = 1 for odd p.
The special case k = p = 0 of this result was done by Wallis [6] in 1981, and the case p = 0 was proved by Caccetta and Mardiyono [2] in 1994. Examples show that the given bounds (i)–(viii) are best possible.  相似文献   

2.
Simple graphs are considered. Let G be a graph andg(x) andf(x) integer-valued functions defined on V(G) withg(x)⩽f(x) for everyxɛV(G). For a subgraphH ofG and a factorizationF=|F 1,F 2,⃛,F 1| ofG, if |E(H)∩E(F 1)|=1,1⩽ij, then we say thatF orthogonal toH. It is proved that for an (mg(x)+k,mf(x) -k)-graphG, there exists a subgraphR ofG such that for any subgraphH ofG with |E(H)|=k,R has a (g,f)-factorization orthogonal toH, where 1⩽k<m andg(x)⩾1 orf(x)⩾5 for everyxɛV(G). Project supported by the Chitia Postdoctoral Science Foundation and Chuang Xin Foundation of the Chinese Academy of Sciences.  相似文献   

3.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

4.
Let G be a k-connected simple graph with order n. The k-diameter, combining connectivity with diameter, of G is the minimum integer d k (G) for which between any two vertices in G there are at least k internally vertex-disjoint paths of length at most d k (G). For a fixed positive integer d, some conditions to insure d k (G)⩽d are given in this paper. In particular, if d⩾3 and the sum of degrees of any s (s=2 or 3) nonadjacent vertices is at least n+(s−1)k+1−d, then d k (G)⩽d. Furthermore, these conditions are sharp and the upper bound d of k-diameter is best possible. Supported by NNSF of China (19971086).  相似文献   

5.
In this paper, we obtain the following result: Let k, n 1 and n 2 be three positive integers, and let G = (V 1,V 2;E) be a bipartite graph with |V1| = n 1 and |V 2| = n 2 such that n 1 ⩾ 2k + 1, n 2 ⩾ 2k + 1 and |n 1n 2| ⩽ 1. If d(x) + d(y) ⩾ 2k + 2 for every xV 1 and yV 2 with xy $ \notin $ \notin E(G), then G contains k independent cycles. This result is a response to Enomoto’s problems on independent cycles in a bipartite graph.  相似文献   

6.
A set S={x 1,...,x n } of n distinct positive integers is said to be gcd-closed if (x i , x j ) ∈ S for all 1 ⩽ i, jn. Shaofang Hong conjectured in 2002 that for a given positive integer t there is a positive integer k(t) depending only on t, such that if nk(t), then the power LCM matrix ([x i , x j ] t ) defined on any gcd-closed set S={x 1,...,x n } is nonsingular, but for nk(t) + 1, there exists a gcd-closed set S={x 1,...,x n } such that the power LCM matrix ([x i , x j ] t ) on S is singular. In 1996, Hong proved k(1) = 7 and noted k(t) ⩾ 7 for all t ⩾ 2. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that k(t) ⩾ 8 for all t ⩾ 2. We further prove that k(t) ⩾ 9 iff a special Diophantine equation, which we call the LCM equation, has no t-th power solution and conjecture that k(t) = 8 for all t ⩾ 2, namely, the LCM equation has t-th power solution for all t ⩾ 2.  相似文献   

7.
Summary For PF2[z] with P(0)=1 and deg(P)≧ 1, let A =A(P) be the unique subset of N (cf. [9]) such that Σn0 p(A,n)zn P(z) mod 2, where p(A,n) is the number of partitions of n with parts in A. To determine the elements of the set A, it is important to consider the sequence σ(A,n) = Σ d|n, dA d, namely, the periodicity of the sequences (σ(A,2kn) mod 2k+1)n1 for all k ≧ 0 which was proved in [3]. In this paper, the values of such sequences will be given in terms of orbits. Moreover, a formula to σ(A,2kn) mod 2k+1 will be established, from which it will be shown that the weight σ(A1,2kzi) mod 2k+1 on the orbit <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>z_i$ is moved on some other orbit zj when A1 is replaced by A2 with A1= A(P1) and A2= A(P2) P1 and P2 being irreducible in F2[z] of the same odd order.  相似文献   

8.
Let F(X) be the set of finite nonempty subsets of a set X. We have found the necessary and sufficient conditions under which for a given function τ: F(X) → ℝ there is an ultrametric on X such that τ(A) = diamA for every AF(X). For finite nondegenerate ultrametric spaces (X, d) it is shown that X together with the subset of diametrical pairs of points of X forms a complete k-partite graph, k ⩾ 2, and, conversely, every finite complete k-partite graph with k ⩾ 2 can be obtained by this way. We use this result to characterize the finite ultrametric spaces (X, d) having the minimal card{(x, y): d(x, y) = diamX, x, yX} for given card X.  相似文献   

9.
The aim of this paper is to discuss the value distribution of the function f (k)af n. Under the assumption that f(z) is a transcendental meromorphic function in the complex plane and a is a non-zero constant, it is proved that if nk + 3, then f (k)af n has infinitely many zeros. The main result is obtained by using the Nevanlinna theory and the Clunie lemma of complex functions. __________ Translated from Acta Scientiarum Naturalium Universitatis NeiMongol, 2004, 35(1): 5–9  相似文献   

10.
Global dimension and left derived functors of Hom   总被引:1,自引:0,他引:1  
It is well known that the right global dimension of a ring R is usually computed by the right derived functors of Hom and the left projective resolutions of right R-modules. In this paper, for a left coherent and right perfect ring R, we characterize the right global dimension of R, from another point of view, using the left derived functors of Hom and the right projective resolutions of right R-modules. It is shown that rD(R)≤n (n≥2) if and only if the gl right Proj-dim MR≤n - 2 if and only if Extn-1(N, M) = 0 for all right R-modules N and M if and only if every (n - 2)th Proj-cosyzygy of a right R-module has a projective envelope with the unique mapping property. It is also proved that rD(R)≤n (n≥1) if and only if every (n-1)th Proj-cosyzygy of a right R-module has an epic projective envelope if and only if every nth Vroj-cosyzygy of a right R-module is projective. As corollaries, the right hereditary rings and the rings R with rD(R)≤2 are characterized.  相似文献   

11.
Let R be a prime ring of char R ≠ 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 ⩾ 0, n 2 ⩾ 0, n 3 ⩾ 0, (u n1 [d(u), u]u n2) n3Z(R) for all uU, then R satisfies S 4, the standard identity in four variables.  相似文献   

12.
The total chromatic number χT (G) of a graph G is the minimum number of colors needed to color the edges and the vertices of G so that incident or adjacent elements have distinct colors. We show that if G is a regular graph and d(G) 32 |V (G)| + 263 , where d(G) denotes the degree of a vertex in G, then χT (G) d(G) + 2.  相似文献   

13.
The paper deals with the structure of intermediate subgroups of the general linear group GL(n, k) of degree n over a field k of odd characteristic that contain a nonsplit maximal torus related to a radical extension of degree n of the ground field k. The structure of ideal nets over a ring that determine the structure of intermediate subgroups containinga transvection is given. Let K = k( n?{d} ) K = k\left( {\sqrt[n]{d}} \right) be a radical degree-n extension of a field k of odd characteristic, and let T =(d) be a nonsplit maximal torus, which is the image of the multiplicative group of the field K under the regular embedding in G =GL(n, k). In the paper, the structure of intermediate subgroups H, THG, that contain a transvection is studied. The elements of the matrices in the torus T = T (d) generate a subring R(d) in the field k.Let R be an intermediate subring, R(d) ⊆ Rk, dR. Let σR denote the net in which the ideal dR stands on the principal diagonal and above it and all entries of which beneath the principal diagonal are equal to R. Let σR denote the net in which all positions on the principal diagonal and beneath it are occupied by R and all entries above the principal diagonal are equal to dR. Let ER) be the subgroup generated by all transvections from the net group GR). In the paper it is proved that the product TER) is a group (and thus an intermediate subgroup). If the net σ associated with an intermediate subgroup H coincides with σR,then TER) ≤ HNR),where NR) is the normalizer of the elementary net group ER) in G. For the normalizer NR),the formula NR)= TGR) holds. In particular, this result enables one to describe the maximal intermediate subgroups. Bibliography: 13 titles.  相似文献   

14.
 We define the index of composition λ(n) of an integer n ⩾ 2 as λ(n) = log n/log γ(n), where γ(n) stands for the product of the primes dividing n, and first establish that λ and 1/λ both have asymptotic mean value 1. We then establish that, given any ɛ > 0 and any integer k ⩾ 2, there exist infinitely many positive integers n such that . Considering the distribution function F(z,x) := #{n < x : λ(n) > z}, we prove that, given 1 < z < 2 and ɛ > 0, then, if x is sufficiently large,
this last inequality also holding if z ⩾ 2. We then use these inequalities to obtain probabilistic results and we state a conjecture. Finally, using (*), we show that the probability that the abc conjecture does not hold is 0.  相似文献   

15.
Let M be a complete K-metric space with n-dimensional metric ρ(x, y): M × M → R n , where K is the cone of nonnegative vectors in R n . A mapping F: MM is called a Q-contraction if ρ (Fx,Fy) ⩽ Qρ (x,y), where Q: KK is a semi-additive absolutely stable mapping. A Q-contraction always has a unique fixed point x* in M, and ρ(x*,a) ⩽ (I - Q)-1 ρ(Fa, a) for every point a in M. The point x* can be obtained by the successive approximation method x k = Fx k-1, k = 1, 2,..., starting from an arbitrary point x 0 in M, and the following error estimates hold: ρ (x*, x k ) ⩽ Q k (I - Q)-1ρ(x 1, x 0) ⩽ (I - Q)-1 Q k ρ(x 1, x 0), k = 1, 2,.... Generally the mappings (I - Q)-1 and Q k do not commute. For n = 1, the result is close to M. A. Krasnosel’skii’s generalized contraction principle.  相似文献   

16.
LetR be a factor ring of the enveloping algebra of a finite dimensional Lie algebra over a fieldk. If the centre ofR, Z, consists of non-zero divisors inR, the ringR z obtained by localizing at the non-zero elements ofZ becomes a finitely generated algebra over the fieldK which arises as the field of fractions ofZ. The Gelfand-Kirillov dimension of anR-moduleM is denotedd(M). In this paper it is shown that ifR Z R M ≠ 0 thend(M) ≧d(R Z R M) + tr. deg k Z, whered (R z M) is the Gelfand-Kirillov dimension ofR z M) viewed as anR z -module andR z is viewed as a finitely generatedK-algebra (not as ak-algebra). The result is primarily of a technical nature.  相似文献   

17.
 We define the index of composition λ(n) of an integer n ⩾ 2 as λ(n) = log n/log γ(n), where γ(n) stands for the product of the primes dividing n, and first establish that λ and 1/λ both have asymptotic mean value 1. We then establish that, given any ɛ > 0 and any integer k ⩾ 2, there exist infinitely many positive integers n such that . Considering the distribution function F(z,x) := #{n < x : λ(n) > z}, we prove that, given 1 < z < 2 and ɛ > 0, then, if x is sufficiently large,
this last inequality also holding if z ⩾ 2. We then use these inequalities to obtain probabilistic results and we state a conjecture. Finally, using (*), we show that the probability that the abc conjecture does not hold is 0. Research supported in part by a grant from NSERC. Re?u le 17 décembre 2001; en forme révisée le 23 mars 2002 Publié en ligne le 11 octobre 2002  相似文献   

18.
Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ:= {z ∈ ℂ: |z| < 1}, normalized by f(0) = f′(0) − 1 = 0 and such that Imz Im f(z) ⩾ 0 for z ∈ Δ.  相似文献   

19.
A criterion of normality based on a single holomorphic function   总被引:1,自引:0,他引:1  
Let F be a family of functions holomorphic on a domain D ⊂ ℂ Let k ≥ 2 be an integer and let h be a holomorphic function on D, all of whose zeros have multiplicity at most k −1, such that h(z) has no common zeros with any fF. Assume also that the following two conditions hold for every fF: (a) f(z) = 0 ⇒ f′(z) = h(z); and (b) f′(z) = h(z) ⇒ |f (k)(z)| ≤ c, where c is a constant. Then F is normal on D.  相似文献   

20.
Let k be a positive integer, let M be a positive number, let F be a family of meromorphic functions in a domain D, all of whose zeros are of multiplicity at least k, and let h be a holomorphic function in D, h ≢ 0. If, for every fF, f and f (k) share 0, and |f(z)| ≥ M whenever f (k)(z) = h(z), then F is normal in D. The condition that f and f (k) share 0 cannot be weakened, and the condition that |f(z)| ≥ M whenever f (k)(z) = h(z) cannot be replaced by the condition that |f(z)| ≥ 0 whenever f (k)(z) = h(z). This improves some results due to Fang and Zalcman [2] etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号